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Chapter 1

Linear spaces

Functional analysis can best be characterized as infinite dimensional linear
algebra. We will use some real analysis, complex analysis, and algebra, but
functional analysis is not really an extension of any one of these.

1.1 Definitions

We start with a field F , which for us will always be the reals or the complex
numbers. Elements of F will be called scalars.

A linear space is a set X together with two operations, addition (denoted
“x + y”) mapping X ×X into X and scalar multiplication (denoted “ax”)
mapping F ×X into X, having the following properties.
(1) x+ y = y + x for all x, y ∈ X;
(2) x+ (y + z) = (x+ y) + z for all x, y, z ∈ X;
(3) there is an element of X denoted 0 such that x + 0 = 0 + x = x for all
x ∈ X;
(4) for each x ∈ X there is an element −x in X such that x+ (−x) = 0;
(5) a(bx) = (ab)X whenever a, b ∈ F and x ∈ F ;
(6) a(x+y) = ax+ay and (a+b)x = ax+bx whenever x, y ∈ X and a, b ∈ F ;
(7) 1x = x for all x ∈ X where 1 is the identity for F .

A vector space is the same thing as a linear space.

Under the operation of addition we see that (1)–(4) says that X is an

1



2 CHAPTER 1. LINEAR SPACES

Abelian group.

We use x− y for x+ (−y).

By the same proofs as in the finite dimensional case, we have the following.

Lemma 1.1 (1) 0x = 0 and
(2) (−1)x = −x.

Proof. First write 0x = (0 + 0)x = 0x+ 0x and subtract 0x from both sides
to get (1). Then write

0 = 0x = (1)x+ (−1)x = x+ (−1)x

and subtract x from both sides to get (2).

We give a number of examples of linear spaces. We leave to the reader
the verification that these satisfy the definition of linear spaces.

Example 1.2 Let X = Rn be the set of n-tuples of real numbers. This is a
linear space over the reals. We have

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and
a(x1, . . . , xn) = (ax1, . . . , axn).

Example 1.3 Let X = Cn be the set of n-tuples of complex numbers. This
is a linear space over the complex numbers. We define addition and scalar
multiplication as in Example 1.2.

Example 1.4 Let X be the collection of all infinite sequences (x1, x2, . . .) of
real numbers with addition being coordinate-wise and scalar multiplication
also being coordinate-wise, that is,

(x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .)

and similarly for scalar multiplication.
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Example 1.5 Let S be a set and let X be the collection of real-valued
bounded functions on S. We define f + g by

(f + g)(s) = f(s) + g(s) (1.1)

for each s ∈ S and af by
(af)(s) = af(s) (1.2)

for each s ∈ S. A closely related example is to let X be the collection of
complex-valued bounded functions on S.

Example 1.6 Let S be a topological space (so that the notion of contin-
uous functions from S to R or to C makes sense) and let X = C(S), the
collection of real-valued continuous functions on S. with addition and scalar
multiplication being defined by (1.1) and (1.2).

Example 1.7 Let X = Ck(R), the set of k times continuously differentiable
functions on R, where addition and scalar multiplication being defined by
(1.1) and (1.2).

Example 1.8 Let µ be a σ-finite measure and let X = Lp(X,µ), the set
of functions f such that |f |p is integrable with respect to the measure µ.
Addition and scalar multiplication are again given by (1.1) and (1.2).

Example 1.9 We can let X be the set of complex-valued functions that are
analytic on the unit disk.

Example 1.10 Let X be the set of finite signed measures on a measurable
space.

If X is a linear space and Y ⊂ X, then we say Y is a linear subspace of
X if ay ∈ Y and x+ y ∈ Y whenever x, y ∈ Y and a ∈ F . This definition is
the obvious generalization of the one given in linear algebra courses.

Let Y be a subset of X, not necessarily a linear subspace. Consider the
collection

{Zα : Zα is a linear subspace of X,S ⊂ Zα}.
It is easy to check that ∩αZα is a subspace of X, and it is called the linear
span of S.
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Proposition 1.11 The linear span of S is equal to

W =
{ n∑

i=1

aixi : ai ∈ F, xi ∈ S, n ≥ 1
}
.

Proof. W is clearly a linear subspace of X containing Y , therefore the span
of Y is contained in W . If Zα is any linear subspace containing Y , then Zα
must contain W , therefore ∩αZα contains W .

1.2 Normed linear spaces

A norm is a map from X → R, denoted ‖x‖, such that
(1) ‖0‖ = 0;
(2) ‖x‖ > 0 if x 6= 0;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ whenever x, y ∈ X; and
(4) ‖ax‖ = |a| ‖x‖ whenever x ∈ X and a ∈ F .
A linear space together with its norm is called a normed linear space.

If we define d(x, y) = ‖x− y‖, then d is easily seen to be a metric, and we
can use all the terminology of topology. Here are a few terms we will need
right away. We define the open ball of radius r about x by

B(x, r) = {y ∈ X : ‖y − x‖ < r}.

The topology generated by the metric d is the smallest collection of subsets
of X that contains all the open balls, has the property that the intersection
of two elements in the topology is again in the topology, and has the property
that the arbitrary union of elements of the topology is again in the topology.
We write xn → x and say xn converges to x if ‖xn−x‖ → 0. A subset Y of X
is closed if y ∈ Y whenever yn ∈ Y for n = 1, 2 . . . and yn → y. A sequence
{yn} of elements of X is a Cauchy sequence if given ε > 0 there exists N
such that d(yn, ym) < ε whenever n,m ≥ N . A metric spaceX is complete if
every Cauchy sequence converges to a point in X. The space X is separable
if there exists a countable subset of X that is dense in X, that is, such that
the smallest closed set containing this countable subset is X itself.
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Two norms ‖x‖1 and ‖x‖2 are equivalent if there exist constants c1 and c2
such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1, x ∈ X.

Equivalent norms give rise to the same topology.

A subspace of a normed linear space is again a normed linear space.

For many purposes it is important to know whether a subspace is closed or
not, closed meaning that the subspace is closed in the topological sense given
above. Here is an example of a subspace that is not closed. Let X = `2, the
set of all sequences {x = (x1, x2, . . .)} with ‖x‖ = (

∑∞
j=1 |xj|2)1/2 < ∞. Let

Y be the collection of points in X such that all but finitely many coordinates
are zero. Clearly Y is a linear subspace. Let y1 = (1, 0, . . .), y2 = (1, 1

2
, 0, . . .),

y3 = (1, 1
2
, 1
4
, 0, . . .) and so on. Each yk ∈ Y . But it is easy to see that

|yk − y| → 0 as k →∞, where y = (1, 1
2
, 1
4
, 1
8
, . . .) and y /∈ Y . Thus Y is not

closed.

For another example, let X = C(R) and Y = C1(R), and define ‖f‖ =
supr∈R |f(r)|, the supremum norm. Clearly Y is a subspace of X, but we
can find a sequence of continuously differentiable functions converging in
the supremum norm to a function that is continuous but not everywhere
differentiable.

1.3 Examples

We give some examples of normed linear spaces. A Banach space is a normed
linear space that is complete.

Example 1.12 Let X be the collection of infinite sequences x = {a1, a2, . . .}
with each ai ∈ C and supi |ai| <∞. Another name for such a space X is `∞.
We define ‖x‖∞ = supj |aj|. This is a normed linear space from a result in
real analysis, because we can identify `∞ with L∞(N, µ), where N is the set
of natural numbers and µ is counting measure, that is, µ(A) is equal to the
number of elements of A. In fact `∞ is a Banach space.

Example 1.13 If 1 ≤ p < ∞, `p is the collection of infinite sequences
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x = (a1, a2, . . .) for which

‖x‖p =
(∑

j

|aj|p
)1/p

is finite. This is a complete normed linear space, hence a Banach space,
because we can identify `p with Lp(N, µ), where N and µ are as in Example
1.12.

Example 1.14 If S is a set, the collection of bounded functions on S with
‖f‖∞ = sups |f(s)| is a complete normed linear space. This is a well known
result from undergraduate analysis. Most of the examples above are separable
metric spaces. However the collection of bounded functions on S is separable
if and only if S is countable - look at the collection {χ{y}}, y ∈ Y , where
χ{y}(x) equals 1 if y = x and 0 otherwise.

Example 1.15 If S is a topological space, then the collection of continuous
bounded functions with ‖f‖ = sups |f(s)| is also a Banach space.

Example 1.16 The Lp spaces are complete normed linear spaces.

Example 1.17 (Sobolev spaces) First consider one dimension. For f ∈
C∞(R) we can define

‖f‖k,p =
(∫

R
|f |p +

∫
R
|f ′|p + · · ·+

∫
R
|f (k)|p

)1/p
,

where f (k) is the kth derivative of f . The set of C∞ functions with compact
support is not complete under this norm. We will discuss this in detail later.

In higher dimensions, let E be a domain in Rn and consider the C∞

functions on E with ∫
E

|Djf(x)|p dx

finite for all |j| ≤ k. Here j = (j1, . . . , jn),

Dj =
Dj1

∂xj11
· · · ∂

jn

∂xjnn
,
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and |j| = j1 + · · ·+ jn. For a norm, we take

|f |k,p =
(∑
|j|≤k

∫
|Djf(x)|p dx

)1/p
.

This is not a complete space, but its completion is denoted W k,p and is called
a Sobolev space.

Example 1.18 If X is the set of finite signed measures µ on a measurable
space, setting ‖µ‖ equal to the total variation of µ makes this into a normed
linear space.

We will discuss Banach spaces in more detail in Chapter 3.

1.4 Direct sums

If Y and Z are subspaces of X, we write X = Y ⊕Z if for each x ∈ X, there
exist a unique y ∈ Y and z ∈ Z such that x = y+z. The decomposition must
be unique, i.e., there is only one y and one z that works for any particular
x. Of course, y and z depend on x. In this case we say that X is the direct
sum of Y and Z.

As an example, let X = R3, Y = {(x, 0, 0) : x ∈ R}. There are lots of
possibilities for Z, in fact, any plane in R3 that passes through the origin
and does not contain the x axis. Given any choice of Z, though, there is only
one way to write a given x as y + z.

We will frequently use Zorn’s lemma, which is equivalent to the axiom of
choice.

Suppose we have a partially ordered set S, which means that there is an
order relation such that
(1) a ≤ a for all a ∈ S,
(2) if a ≤ b and b ≤ a, then a = b, and
(3)if a ≤ b and b ≤ c, then a ≤ c.
A subset is totally ordered if for every pair x, y in the subset, either x ≤ y or
y ≤ x. An element u of a partially ordered set is an upper bound for a subset
of S if x ≤ u for every x in the subset. An element x of a partially ordered
set is maximal if y ≥ x implies y = x.
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Lemma 1.19 (Zorn’s lemma) Let X be a partially ordered set. If every
totally ordered subset of X has an upper bound in X, then X has a maximal
element.

Note that it is not required that the upper bound for a totally ordered
subset be in the subset.

Lemma 1.20 Suppose Y is a subspace of a linear space X. Then there exists
a linear subspace Z such that X = Y ⊕ Z.

Proof. Look at {Z : Z a subspace of X,Z ∩ Y = {0}}. We partially order
this collection by inclusion: Zα ≤ Zβ if Zα ⊂ Zβ. If {Zα} is a totally ordered
subcollection, then ∪αZα is an upper bound in the collection. Let Z0 be the
maximal element guaranteed by Zorn’s lemma.

Suppose there is a point x ∈ X that is not in Y ⊕ Z0. We adjoin x to Z0

to form Z1 as follows: Z1 = {ax+ z : z ∈ Z0, a ∈ R}. Z1 is a subspace of X
that is strictly bigger than Z0. We argue that Z1 ∩ Y = {0}, a contradiction
to the fact that Z0 is maximal.

x is not in the direct sum of Y and Z0, so x /∈ Y , or else we could write
x = x+ 0. If w 6= 0 and w ∈ Z1 ∩ Y , then there exist a ∈ R and z ∈ Z0 such
that w = ax + z. One possibility is that a = 0; but then w = z ∈ Z0 ∩ Y ,
which isn’t possible since w is nonzero. The other possibility is that a 6= 0.
But w ∈ Y , so

x =
w

a
+
−z
a
∈ Y ⊕ Z0,

also a contradiction.

If Z and U are normed linear spaces, we can make Z ⊕ U into a normed
linear space by defining

|(z, u)| = |z|+ |u|.

1.5 The unit ball in infinite dimensions

In finite dimensions, the closed unit ball is always compact, but this is not the
case in infinite dimensions. As an example, consider `2. If ei is the sequence
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which has a one in the ith place and 0 everywhere else, then ‖ei − ej‖ =
√

2
if i 6= j. But then {ei} is a sequence contained in the unit ball that has no
convergent subsequence, hence the unit ball is not compact.

In fact, the closed unit ball B = {x : |x| ≤ 1} is never compact in infinite
dimensions.

First we define what infinite dimensional means. Elements x1, x2, . . . , xn of
X are said to be linearly dependent if there exist a1, . . . , an in F , not all equal
to 0, such that a1x1+ · · ·+anxn = 0. If x1, . . . , xn are not linearly dependent,
they are linearly independent. A linear space X is finite dimensional if there
are finitely many nonzero elements whose linear span is all of X. If X is not
finite dimensional, it is infinite dimensional. We write dimX = n if there
exist n linearly independent nonzero elements of X whose linear span is equal
to X.

The key to proving that the unit ball in an infinite dimensional space is
not compact is the following proposition.

Proposition 1.21 Suppose Y is a finite dimensional subspace of X that is
not all of X. There exists v such that ‖v‖ = 1 and infz∈Y ‖v − z‖ ≥ 1/2.

Proof. Since Y is finite dimensional, it is closed. It is not all of X, so there
exists x ∈ X \ Y . Let d = infy∈Y ‖y − x‖. We claim that d > 0. If not, then
there exists a sequence yn ∈ Y such that ‖yn − x‖ → 0. This means that yn
converges to x. But Y is closed, so x ∈ Y , a contradiction.

Choose w ∈ Y such that ‖x − w‖ < 2d. Let z = x − w so ‖z‖ < 2d. If
y ∈ Y , then y + w ∈ Y and

‖z − y‖ = ‖x− (y + w)‖ ≥ d.

If we let v = z/‖z‖, then for all y ∈ Y

‖v − y‖ =
∥∥∥ z

‖z‖
− y
∥∥∥ =

1

‖z‖
∥∥z − ‖z‖y∥∥ ≥ d

2d
=

1

2

since ‖z‖y ∈ Y .

Theorem 1.22 Let X be an infinite dimensional normed linear space. Then
the closed unit ball is not compact.
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Proof. Choose y1 such that ‖y1‖ = 1. Given y1, . . . , yn−1, let Yn be the
linear span. Since Yn is finite dimensional, it is closed. By Proposition 1.21
there exists yn such that ‖yn‖ = 1 and infy∈Yn ‖y − yn‖ ≥ 1/2. We continue
by induction and find a sequence {yn} contained in the closed unit ball such
that ‖yj − yn‖ ≥ 1/2 if j < n, hence which has no convergent subsequence.



Chapter 2

Linear maps

2.1 Basic notions

Let X and Y be linear spaces over F . A map M : X → U is linear or
is a linear map or is a linear operator if M(x + y) = M(x) + M(y) and
M(ax) = aM(x) for all x, y ∈ X and all a ∈ F .

Here are some examples of linear operators.

(1) Let X = L1(µ), g be bounded and measurable, and define

Mf =

∫
f(x)g(x)µ(dx).

Here M maps X into R.

(2) Let X be the space of bounded functions on a set S, fix points
x1, . . . , xn ∈ S, and let Mf = (f(x1), . . . , f(xn)). Here M maps X to Rn.

(3) Let X be Rm, let Y be Rn, let aij ∈ R for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and define the ith coordinate of Mx to be

∑n
j=1 aijxj. This is just matrix

multiplication.

In fact all linear maps in finite dimensions can be viewed in this way. To
see this, let e1, . . . , em be linearly independent nonzero elements of X and
f1, . . . , fn linearly independent nonzero elements of Y . Since {f1, . . . , fn}
spans Y , there exist elements ai1, . . . , ain of F such that Mei =

∑n
j=1 aijfj

for i = 1, . . . ,m.

11
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(4) Let X be the set of bounded sequences, suppose that

sup
i

∞∑
j=1

|aij| <∞,

and define the ith coordinate of Mx to be
∑∞

j=1 aijxj.

(5) Let X be the set of bounded measurable functions on some measure
space with finite measure µ, and suppose K(x, y) is jointly measurable and
bounded. Define Mf by

Mf(x) =

∫
K(x, y)µ(dy).

If M and N are linear maps from X into Y and a is a scalar, we define

(M +N)(x) = M(x) +N(x), (aM)(x) = aM(x).

Thus the set of linear maps from X into Y is a linear space, and we denote
it by L(X, Y ).

If M : X → Y and N : Y → Z, we define (NM)(x) = N(M(x)).

An exercise is to show this is associative but not necessarily commutative.
(Multiplication by matrices is an example to show commutativity need not
hold.) It is distributive:

M(N +K) = MN +MK, (M +K)N = MN +KN.

We usually write Mx for M(x).

Define the identity I : X → X by Ix = x. We will also write IX when we
want to emphasize the space.

We say M : X → Y is invertible if there exists M−1 : Y → X such that
M−1M = IX , MM−1 = IY .

If M is linear and invertible, then M−1 is also linear. To see this, suppose
y1 = Mx1 and y2 = Mx2 are elements of Y with x1, x2 ∈ X. Then y1 + y2 =
Mx1+Mx2 = M(x1+x2). Hence M−1(y1+y2) = x1+x2 = M−1y1+M−1y2.
Similarly M−1(ay) = aM−1y.
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Two linear spaces are said to be isomorphic if there exists a one-to-one
linear mapping from one space onto the other.

Given two linear spaces Y and Z, we can define a new space X = {(y, z) :
y ∈ Y, z ∈ Z} and define (y1, z1) + (y2, z2) = (y1 + y2, z1, z2) and define scalar
multiplication similarly. Clearly Y is isomorphic to Y ′ = {(y, 0) : y ∈ Y }
and Z is isomorphic to Z ′ = {(0, z) : z ∈ Z}. Moreover we see that X =
Y ′ ⊕ Z ′. If Y and Z are normed linear spaces, then X is also if we define
‖(y, z)‖ = ‖y‖+ ‖z‖.

The null space or kernel of M is NM = {x ∈ X : Mx = 0} and the range
of M is RM = {Mx : x ∈ X}.

Observe that NM ⊂ X and RM ⊂ Y .

Some easily checked facts: NM and RM are linear subspaces, and if L,M
are invertible, then (LM)−1 = M−1L−1.

2.2 Boundedness and continuity

A linear map M from a normed linear space X into a normed linear space
Y is a bounded linear map if

‖M‖ = sup{‖Mx‖ : ‖x‖ = 1} (2.1)

is finite.

A linear map M from a normed linear space X to a Banach space Y is
continuous if xn → x implies Mxn →Mx.

Proposition 2.1 M is continuous if and only if it is bounded.

Proof. If M is bounded,

‖M(xn)−M(x)‖ = ‖M(xn − x)‖ ≤ c‖xn − x‖ → 0

for some c <∞, and so it is continuous.

Suppose M is continuous but not bounded. Then there exist xn such that
‖M(xn)‖ > n‖xn‖. If

yn =
1√
n

xn
‖xn‖

,
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then ‖yn − 0‖ = ‖yn‖ → 0, but

‖M(yn)‖ > 1√
n
n
‖xn‖
‖xn‖

=
√
n,

which does not tend to 0 = M(0), a contradiction.

Define

‖M‖ = sup
x6=0

‖Mx‖
‖x‖

,

or what is the same,
‖M‖ = sup

‖x‖=1

‖Mx‖.

Proposition 2.2 Suppose M and N are linear maps from a normed linear
space X into a normedlinear space Y . Then ‖aM‖ = |a| ‖M‖, ‖M‖ ≥ 0 and
equals 0 if and only if M = 0, and ‖M +N‖ ≤ ‖M‖+ ‖N‖.

The proofs are easy.

Proposition 2.3 NM is closed.

Proof. {0} is closed, M is a continuous function from one metric space into
another, so NM = M−1({0}) is closed.

Proposition 2.4 Suppose X, Y , and Z are normed linear spaces, M is a
linear map from X to Y , and N is a linear map from Y to Z. Then ‖NM‖ ≤
‖N‖ ‖M‖.

Proof. For ‖x‖ = 1,

‖NMx‖ ≤ ‖N‖ ‖Mx‖ ≤ ‖N‖ ‖M‖ ‖x‖.
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2.3 Quotient spaces

Let X be a linear space and Y a subspace. We write x1 ≡ x2 and say
that x1 is equivalent to x2 if x1 − x2 ∈ Y . This is an equivalence relation.
Let x denote the equivalence class containing x. The collection of all such
equivalence classes is denoted X/Y and called the quotient space of X with
respect to Y ,

Let’s make X/Y into a linear space. If x1, x2 are in X/Y , define x1 + x2
to be x1 + x2. To see that this is well defined, if z1, z2 are any two elements
of x1, x2, resp., then (x1 + x2)− (z1 + z2) = (x1 − z1) + (x2 − z2), the sum of
two elements of Y , hence an element of Y . Hence x1 + x2 = z1 + z2, and it
doesn’t matter in the definition which elements of x1 and x2we choose. We
similarly define ax = ax. It is now routine to verify that X/Y is a linear
space.

We define the codimension of Y by

codim Y = dimX/Y.

Let’s look at an example. Let X = R5 and suppose Y = {(x, y, 0, 0, 0) :
x, y ∈ R}. x1 ≡ x2 if and only if the 3rd through 5th coordinates of x1 and
x2 agree. Therefore X/Y is (essentially - at least it is isomorphic to) the
3rd through 5th coordinates of points in R5, hence isomorphic to R3. We see
codim Y = dimX/Y = 3, while dimY = 2.

Proposition 2.5 If X = Y ⊕ Z, then X/Y is isomorphic to Z.

Proof. If x ∈ X/Y , then x ∈ X and we can write x = z + y, where z ∈ Z
and y ∈ Y . Define Mx = z. We will show that M is an isomorphism.

First we need to show M is well defined. If x′ is another element of x, we
can write x′ = z′+y′ with z′ ∈ Z and y′ ∈ Y . Then x−x′ = (z−z′)+(y−y′).
Since we can also write x−x′ = 0+(x−x′) and we can write each element of
X as a sum of elements of Z and Y in only one way, we must have z−z′ = 0,
or z = z′.

Next we show M is linear. If x1 + x2 ∈ x1 + x2, then x1 = z1 + y1,
x2 = z2 + y2, and then x1 + x2 = (z1 + z2) + (y1 + y2). So M(x1 + x2) =
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z1 + z2 = Mx1 +Mx2. The linearity with respect to scalar multiplication is
similar.

We show M is one-to-one. If Mx = Mx′, and we write x = z + y,
x′ = z′ + y′, then z = Mx = Mx′ = z′. Hence

x− x′ = (z − z′) + (y − y′) = y − y′ ∈ Y,

so x = x′.

Finally, M is onto, because if z ∈ Z, then z = z + 0 ∈ X and Mz = z.

Let M : X → Y . We will need the fact that

Proposition 2.6 X/NM is isomorphic to RM .

Proof. If x ∈ X/NM , we define M̃x to be Mx for any x ∈ x. If x′ is any
other element of x, then x− x′ ∈ NM , or M(x− x′) = 0, or Mx = Mx′. So

the map M̃ is well defined. It is routine to check that M̃ is linear.

To show M̃ is one-to-one, if M̃x = M̃y, then Mx = My, or M(x−y) = 0,

or x − y ∈ NM , so x = y. To show M̃ is onto, if y ∈ RM , then y = Mx for
some x ∈ X. Then M̃x = Mx = y.

2.4 Convex sets

A set K ⊂ X is convex if λx+(1−λ)y ∈ K whenever x, y ∈ K and λ ∈ [0, 1].

A convex combination of x1, . . . , xm is a sum of the form

n∑
i=1

aixi,

where
∑n

i=1 ai = 1, n is a positive integer, and all the ai are non-negative.

If K is convex and x1, . . . , xn ∈ K, each ai ≥ 0, and
∑n

i=1 ai = 1, then∑n
i=1 aixi ∈ K. This can be proved easily using induction on n.
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Lemma 2.7 Linear subspaces are convex. Intersections of convex sets are
convex. If M : X → Y is linear and K ⊂ X is convex, then {M(x) : x ∈ K}
is convex.

The proof is left as an exercise.

If S ⊂ X, the convex hull of S is the intersection of all the convex sets
containing S.

Proposition 2.8 The convex hull of S is equal to the set of all convex com-
binations of points of S.

Proof. Let H be the convex hull of S and C the set of all convex combi-
nations of points of S. If y is in C, then y =

∑n
i=1 aixi where each xi ∈ S,

each ai ≥ 0, and
∑n

i=1 ai = 1. Therefore y is in each convex set containing
S, hence y ∈ H. Thus C ⊂ H.

Suppose y =
∑n

i=1 aixi, where xi ∈ S, each ai ≥ 0, and
∑n

i=1 ai = 1
and similarly z =

∑m
j=1 bjx

′
j. If m < n, we can set bm+1, . . . , bn = 0 and

xm+1, . . . , xn any point in S, and can thus assume m ≥ n. Similarly we may
without loss of generality assume n ≥ m, hence m = n. If λ ∈ [0, 1], we have

λy + (1− λ)z =
2n∑
k=1

ckwk,

where ck = λak and wk = xk if k ≤ n and ck = (1− λ)bk−n and wk = x′k−n if
k > n. Then each ck ≥ 0 and

n∑
k=1

ck +
2n∑

k=n+1

ck = λ
n∑
k=1

ak + (1− λ)
n∑
k=1

bk = λ+ (1− λ) = 1.

This proves that C is convex, and since C contains S we have H ⊂ C.

If K is convex, and E ⊂ K, then E is an extreme subset of K if
(1) E is convex and non-empty, and
(2) if x ∈ E and x = y+z

2
with y, z ∈ K, then y, z ∈ E.

If E is a single point, then the point is called an extreme point of K.

For an example, consider the case where K is a polygon (plus the interior)
in R2. Each edge of K is an extreme subset. Each vertex is an extreme point.
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Proposition 2.9 If E is an extreme subset of F and F is an extreme subset
of G, then E is an extreme subset of G.

Proof. Suppose x ∈ E and x = (y+z)/2 for y, z ∈ G. Since x ∈ E ⊂ F and
F is an extreme subset of G, then y, z ∈ F . But then since E is an extreme
subset of F , we must have y, z ∈ E.

2.5 Hahn-Banach theorem

A linear functional ` is a linear map from X to F . In this section we will
take F to be the reals. In a later section we will consider the case when F is
the complex numbers.

The Hahn-Banach theorem is a tool that lets us assert that there is a
plentiful supply of linear functionals.

We will be working with a sublinear functional p(x) in the statement of
the theorem. Suppose p : X → R is a sublinear functional if
(1) p(ax) = ap(x) whenever a > 0 and x ∈ X and
(2) p(x+ y) ≤ p(x) + p(y) if x, y ∈ X.

One example is to let p(x) = c‖x‖, where c > 0. This example requires X
to be a normed linear space.

Here is another example that applies to linear spaces, whether or not they
are normed linear spaces.

A point x0 ∈ S ⊂ X is interior to S if for all y ∈ X, there exists ε
(depending on y) such that x0 + ty ∈ S if −ε < t < ε.

Let K be a convex set with 0 as an interior point. Define

pK(x) = inf
{
b > 0 :

x

b
∈ K

}
. (2.2)

pK is sometimes called the gauge of K.

Proposition 2.10 pK is a sublinear functional.



2.5. HAHN-BANACH THEOREM 19

Proof. It is clear that pK(ax) = apK(x) if a > 0. Let x, y ∈ X. If pK(x) or
pK(y) is infinite, there is nothing to prove. So suppose both are finite and
let ε > 0. Choose pK(x) < a < pK(x) + ε and pK(y) < b < pK(y) + ε. Then
x
a

and y
b

are in K. Letting λ = a/(a+ b), then by the convexity of K

λ
x

a
+ (1− λ)

y

b
=
x+ y

a+ b

is in K. So
pK(x+ y) ≤ a+ b ≤ pK(x) + pK(y) + 2ε.

Since ε is arbitrary, we are done.

Here is the Hahn-Banach theorem for real-valued linear functionals.

Theorem 2.11 Suppose p : X → R satisfies p(ax) = ap(x) if a > 0 and
p(x + y) ≤ p(x) + p(y) if x, y ∈ X. Suppose Y is a linear subspace, ` is
a linear functional on Y , and `(y) ≤ p(y) for all y ∈ Y . Then ` can be
extended to a linear functional on X satisfying `(x) ≤ p(x) for all x ∈ X.

Proof. If Y is not all of X, pick z ∈ X \ Y . Look at Y1 = {y + az : y ∈
Y, a ∈ R}. We want to define `(z) to be some real number with the property
that if we set

`(y + az) = `(y) + a`(z),

we would have `(y) + a`(z) ≤ p(y+ az) for all y ∈ Y and a ∈ R. This would
give us an extension of ` from Y to Y1.

For all y, y′ ∈ Y ,

`(y′) + `(y) = `(y′ + y) ≤ p(y′ + y) = p((y + z) + (y′ − z))

≤ p(y + z) + p(y′ − z).

So
`(y′)− p(y′ − z) ≤ p(y + z)− `(y).

This is true for all y, y′ ∈ Y . So choose `(z) to be a number between
supy′ [`(y

′)− p(y′ − z)] and infy[p(y + z)− `(y)]. Therefore

`(y′)− p(y′ − z) ≤ `(z) ≤ p(y + z)− `(y),
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or
`(y) + `(z) ≤ p(y + z), `(y′)− `(z) ≤ p(y′ − z).

If a > 0,
`(y + az) = a`(y

a
+ z) ≤ ap(y

a
+ z) = p(y + az).

Similarly `(y′ − az) ≤ p(y′ − az) if a > 0.

So we have extended ` from Y to Y1, a larger space. Let {(Yα, `α)} be the
collection of all extensions of (Y, `). We partially ordered this collection by
saying (Yα, `α) ≤ (Yβ, `β) if Yα ⊂ Yβ and `β is an extension of `α. If {(Yβ, `β)}
is a totally ordered subset, define ` on ∪βYβ by setting `(z) = `β(z) if z ∈ Yβ.
By Zorn’s lemma, there is a maximal extension. This maximal extension
must be all of X, or else by the above we could extend it.

Corollary 2.12 Suppose that X is a normed linear space X, Y is a linear
subspace of X, and ` is a bounded linear functional on Y . Then ` can be
extended to a bounded linear functional on X with the same norm.

Proof. Let M be the norm of ` as a bounded linear map on Y and set
p(x) = M‖x‖ for x ∈ X. Our assumption tells us that `(y) ≤ p(y) for y ∈ Y .
Take the extension guaranteed by Theorem 2.11, and then `(x) ≤M‖x‖ for
all x ∈ X. Applying this also to −x, we have −`(x) = `(−x) ≤M‖x‖, hence
|`(x)| ≤M‖x‖.

This corollary is the version of the Hahn-Banach theorem one learns in
real analysis courses.

2.6 Complex linear functionals

Now we turn to linear spaces (not necessarily normed) over the complex
numbers.

Theorem 2.13 Let X be a linear space over C. Suppose p ≥ 0 satisfies
p(ax) = |a|p(x) for all x ∈ X, a ∈ C, and p(x + y) ≤ p(x) + p(y) for
all x, y ∈ X. If Y is a subspace of X, ` is a linear functional on Y , and
|`(y)| ≤ p(y) for all y ∈ Y , then ` can be extended to a linear functional on
X with |`(x)| ≤ p(x) for all x.
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For normed linear spaces an example would be p(x) = M‖x‖.

Proof. Write ` as `(y) = `1(y) + i`2(y), the real and imaginary parts of `.
Since ` is linear,

i`(y) = `1(iy) + i`2(iy).

On the other hand
i`(y) = i`1(y)− `2(y)

by substituting in for `(y) and multiplying by i. Equating the real parts,
`1(iy) = −`2(y).

One can work this in reverse to see that if `1 is a linear functional over
the reals, and we define `(x) = `1(x)− i`1(ix), we get a linear functional over
the complexes.

To extend `, we have

`1(y) ≤ |`(y)| ≤ p(y).

Use Hahn-Banach to extend `1 to all of X and set `(x) = `1(x)− i`1(ix).

We need to show that |`(x)| ≤ p(x) for all x. Fix x and write `(x) = ar,
where r is real and |a| = 1. Then

|`(x)| = r = a−1`(x) = `(a−1x).

Since `(a−1x) = |`(x)|, it is real with no imaginary part, and therefore equals

`1(a
−1x) ≤ p(a−1x) = |a−1|p(x) = p(x).

2.7 Positive linear functionals

Let S be an arbitrary set and let X be the collection of real-valued bounded
functions on S. We say x ≤ y if x(s) ≤ y(s) for all s ∈ S. (We’ll use x ≥ y
if y ≤ x.) A function x is non-negative if 0 ≤ x. Let Y be a linear subspace
of X. ` is a positive linear functional on Y if `(y) ≥ 0 whenever y ≥ 0. Note
that if x ≤ y, then 0 ≤ `(y − x) = `(y)− `(x), so `(x) ≤ `(y).
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One example is to take `(y) = y(s0) for some point s0 in S. Or we could
take a linear combination

∑
ciy(si) provided all the ci ≥ 0. Another example

is to take (S, µ) to be a measure space and let `(y) =
∫
y(s)µ(dx).

Proposition 2.14 Let Y be a linear subspace and suppose there exists y0 ∈
Y such that y0(s) ≥ 1 for all s. Let ` be a positive linear functional on Y .
Then ` can be extended to a positive linear functional on X.

Proof. Define
p(x) = inf{`(y) : y ∈ Y, y ≥ 0, y ≥ x}.

Since −cy0 ≤ x ≤ cy0 if x is bounded by c, we are not taking the infimum of
an empty set. Since x ≤ cy0, then p(x) ≤ c`(y0) <∞.

It is clear that p(ax) = ap(x) if x ∈ X and a > 0. To show that p is a
sublinear functional, suppose x1, x2 ∈ X, let ε > 0, and choose y1, y2 ∈ Y
with x1 ≤ y1, x2 ≤ y2, 0 ≤ y1, 0 ≤ y2, `(y1) ≤ p(x1)+ε, and `(y2) ≤ p(x2)+ε.
Then y1 + y2 ∈ Y , y1 + y2 ≥ 0, y1 + y2 ≥ x1 + x2, and so

p(x1 + x2) ≤ `(y1 + y2) = `(y1) + `(y2) ≤ p(x1) + p(x2) + 2ε.

Since ε is arbitrary, this proves sublinearity.

If y ∈ Y , y′ ≥ 0, and y′ ≥ y is any other element in Y , then `(y) ≤ `(y′),
so p(y) ≥ `(y).

We now use Theorem 2.11 to extend ` to all of B. If x ≥ 0, then −x ≤ 0,
so

`(−x) ≤ p(−x) ≤ l(0) = 0

since 0 ∈ Y , and then `(x) = −`(−x) ≥ 0.

The additional assumption here is that there is a function in Y that is
bounded below by a positive number. (If y0 is bounded below by δ > 0, look
at y0/δ.)

2.8 Separating hyperplanes

If ` is a real-valued linear functional on a linear space over the reals, then
{x : `(x) = c} is a hyperplane. This splits X into two parts, those x for which
`(x) > c and those for which `(x) < c.
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Recall the definition of the gauge pK of a convex set from (2.2).

Proposition 2.15 (1) If K is convex, 0 is interior to K, and x ∈ K, then
pK(x) ≤ 1. If K is convex and x is interior to K, then pK(x) < 1.
(2) Let p be a positive sublinear functional. Then {x : p(x) < 1} is convex
and 0 is an interior point. Also {x : p(x) ≤ 1} is convex.

We leave the proof to the reader.

We now prove the hyperplane separation theorem.

Theorem 2.16 Suppose K is a nonempty convex subset of a linear space X
over the reals and all points of K are interior. If y /∈ K, then there exist `
and c such that `(x) < c for all x ∈ K and `(y) = c.

Proof. Without loss of generality, assume 0 ∈ K. Note pK(x) < 1 for all
x ∈ K. Set `(y) = 1 and `(ay) = a. If a ≤ 0, `(ay) ≤ 0 ≤ pK(ay). If a > 0,
then since y /∈ K, pK(y) ≥ 1, and so pK(ay) ≥ a = `(ay).

We let Y = {ay} and use Hahn-Banach to extend ` to all of X. We have
`(x) ≤ pK(x) < 1 if x ∈ K and l(y) = 1. We take c = 1.

Corollary 2.17 If K is convex with at least one interior point and y /∈ K,
there exists ` 6= 0 such that `(x) ≤ `(y) for all x ∈ K.

A+B is defined to be {a+ b : a ∈ A, b ∈ B}.

Corollary 2.18 Let H and M be disjoint convex sets, with at least one
having an interior point. Then there exist ` and c such that

`(u) ≤ c ≤ `(v), u ∈ H, v ∈M.

Proof. −M is convex, so K = H+(−M) is convex. K must have an interior
point. H ∩M = ∅, so 0 /∈ K. Let y = 0. There exists ` such that

`(x) ≤ `(0) = 0 x ∈ K.

If u, v ∈ H,M , resp., then x = u−v ∈ K, so `(x) ≤ 0, and hence `(u) ≤ `(v).



24 CHAPTER 2. LINEAR MAPS



Chapter 3

Banach spaces

3.1 Preliminaries

A Banach space is a complete normed linear space.

If X and Y are metric spaces, a map ϕ : X → Y is an isometry if
dY (ϕ(x), ϕ(y)) = dX(x, y) for all x, y ∈ X, where dX is the metric for X and
dY the one for Y . A metric space X∗ is the completion of a metric space X
is there is an isometry ϕ of X into X∗ such that ϕ(X) is dense in X∗ and
X∗ is complete.

Recall that any metric space can be embedded in a complete metric space.
See [1] for a proof of the following theorem.

Theorem 3.1 If X is a metric space, then it has a completion X∗.

Of course, if X is already complete, its completion is X itself and ϕ is the
identity map.

We have already seen some examples of Banach space. We looked at

(1) `∞, the collection of infinite sequences {a1, a2, . . .} with each ai ∈ C
and supi |ai| <∞. We define ‖x‖∞ = supj |aj|.

(2) If 1 ≤ p <∞, `p is the collection of infinite sequences for which

‖x‖p =
(∑

j

|aj|p
)1/p

25
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is finite.

(3) If S is a set, the collection of bounded functions on S with ‖f‖∞ =
sups |f(s)|.

(4) If S is a topological space, then the collection of continuous bounded
functions with ‖f‖ = sups |f(s)|.

(5) The Lp spaces.

(6) We defined for f ∈ C∞(R)

‖f‖k,p =
(∫

R
|f |p +

∫
R
|f ′|p + · · ·+

∫
R
|f (k)|p

)1/p
,

where f (k) is the kth derivative of f . The set of C∞ functions with compact
support is not complete under this norm, but we can take its completion and
that will be a Banach space.

In higher dimensions, let D be a domain in Rn and consider the C∞

functions on D with ∫
D

|∂αf(x)|p dx

finite for all |α| ≤ k. Here ∂α = ∂α1

∂x
α1
1
· · · ∂αn

∂xαnn
and |α| = α1 + · · ·+ αn. For a

norm, we take

‖f‖k,p =
( ∑
|α|≤k

∫
|∂αf(x)|p dx

)1/p
.

This is not a complete space, but its completion is denoted W k,p and is called
a Sobolev space.

We wrote L(X, Y ) for the set of linear maps from a Banach space X to a
Banach space Y .

Proposition 3.2 L is itself a Banach space.

Proof. Let Mn be a Cauchy sequence. For each x ∈ X, Mnx is a Cauchy
sequence in Y . Since Y is complete, Mnx converges, say to a point Nx. Let
ε > 0. Note

|Nx−Mnx| ≤ lim sup
m→∞

|Mmx−Mnx|,

which will be less than ε if n is large enough, independently of x. Thus Mn

converges to N uniformly. Showing that N is a linear map is easy.
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3.2 Baire’s theorem

We turn now to the Baire category theorem and some of its consequences.
Recall that if A is a set, we use A for the closure of A and Ao for the interior
of A. A set A is dense in X if A = X and A is nowhere dense if (A)o = ∅.

The Baire category theorem is the following. Completeness of the metric
space is crucial to the proof.

Theorem 3.3 Let X be a complete metric space.
(1) If Gn are open sets dense in X, then ∩nGn is dense in X.
(2) X cannot be written as the countable union of nowhere dense sets.

Proof. We first show that (1) implies (2). Suppose we can write X as a
countable union of nowhere dense sets, that is, X = ∪nEn where (En)o = ∅.
We let Fn = En, which is a closed set, and then F o

n = ∅ and X = ∪nFn.
Let Gn = F c

n, which is open. Since F o
n = ∅, then Gn = X. Starting with

X = ∪nFn and taking complements, we see that ∅ = ∩nGn, a contradiction
to (1).

We must prove (1). Suppose G1, G2, . . . are open and dense in X. Let H
be any non-empty open set in X. We need to show there exists a point in
H∩(∩nGn). We will construct a certain Cauchy sequence {xn} and the limit
point, x, will be the point we seek.

Let B(z, r) = {y ∈ X : d(z, y) < r}, where d is the metric. Since G1 is
dense in X, H ∩G1 is non-empty and open, and we can find x1 and r1 such
that B(x1, r1) ⊂ H ∩G1 and 0 < r1 < 1. Suppose we have chosen xn−1 and
rn−1 for some n ≥ 2. Since Gn is dense, then Gn ∩B(xn−1, rn−1) is open and
non-empty, so there exists xn and rn such that B(xn, rn) ⊂ Gn∩B(xn−1, rn−1)
and 0 < rn < 2−n. We continue and get a sequence xn in X. If m,n > N ,
then xm and xm both lie on B(xN , rN), and so d(xm, xn) < 2rN < 2−N+1.
Therefore xn is a Cauchy sequence, and since X is complete, xn converges to
a point x ∈ X.

It remains to show that x ∈ H ∩ (∩nGn). Since xn lies in B(xN , rN) if
n > N , then x lies in each B(xN , rN), and hence in each GN . Therefore
x ∈ ∩nGn. Also,

x ∈ B(xn, rn) ⊂ B(xn−1, rn−1) ⊂ · · · ⊂ B(x1, r1) ⊂ H.
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Thus we have found a point x in H ∩ (∩nGn).

A set A ⊂ X is called meager or of the first category if it is the countable
union of nowhere dense sets; otherwise it is of the second category.

3.3 Uniform boundedness theorem

An important application of the Baire category theorem is the Banach-
Steinhaus theorem, also called the uniform boundedness theorem.

Theorem 3.4 Suppose X is a Banach space and Y is a normed linear space.
Let A be an index set and let {Mα : α ∈ A} be a collection of bounded linear
maps from X into Y . Then either there exists a positive real number N <∞
such that ‖Mα‖ ≤ N for all α ∈ A or else supα ‖Mαx‖ =∞ for some x.

Proof. Let `(x) = supα∈A ‖Mαx‖. Let Gn = {x : `(x) > n}. We argue
that Gn is open. The map x → ‖Mαx‖ is a continuous function for each α
since Mα is a bounded linear functional. This implies that for each α, the
set {x : ‖Mαx‖ > n} is open. Since x ∈ Gn if and only if for some α ∈ A we
have ‖Mαx‖ > n, we conclude Gn is the union of open sets, hence is open.

Suppose there exists N such that GN is not dense in X. Then there
exists x0 and r such that B(x0, r) ∩ GN = ∅. This can be rephrased as
saying that if ‖x − x0‖ ≤ r, then ‖Mα(x)‖ ≤ N for all α ∈ A. If ‖y‖ ≤ r,
we have y = (x0 + y) − x0. Then ‖(x0 + y) − x0‖ = ‖y‖ ≤ r, and hence
‖Mα(x0 + y)‖ ≤ N for all α. Also, of course, ‖x0 − x0‖ = 0 ≤ r, and thus
‖Mα(x0)‖ ≤ N for all α. We conclude that if ‖y‖ ≤ r and α ∈ A,

‖Mαy‖ = ‖Mα((x0 + y)− x0)‖ ≤ ‖Mα(x0 + y)‖+ ‖Mαx0‖ ≤ 2N.

Consequently, supα ‖Mα‖ ≤ N with N = 2N/r.

The other possibility, by the Baire category theorem, is that every Gn is
dense in X, and in this case ∩nGn is dense in X. But `(x) = ∞ for every
x ∈ ∩nGn.
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3.4 Open mapping theorem

The following theorem is called the open mapping theorem. It is important
that M be onto. A mapping M : X → Y is open if M(U) is open in Y
whenever U is open in X. For a measurable set A, we let M(A) = {Mx :
x ∈ A}.

Theorem 3.5 Let X and Y be Banach spaces. A bounded linear map M
from X onto Y is open.

Proof. We need to show that if B(x, r) ⊂ X, then M(B(x, r)) contains a
ball in Y . We will show M(B(0, r)) contains a ball centered at 0 in Y . Then
using the linearity of M , M(B(x, r)) will contain a ball centered at Mx in
Y . By linearity, to show that M(B(0, r)) contains a ball centered at 0, it
suffices to show that M(B(0, 1)) contains a ball centered at 0 in Y .

Step 1. We show that there exists r such that B(0, r2−n) ⊂M(B(0, 2−n)) for
each n. Since M is onto, Y = ∪∞n=1M(B(0, n)). The Baire category theorem
tells us that at least one of the sets M(B(0, n)) cannot be nowhere dense.
Since M is linear, M(B(0, 1)) cannot be nowhere dense. Thus there exist y0
and r such that B(y0, 4r) ⊂M(B(0, 1)).

Pick y1 ∈ M(B(0, 1)) such that ‖y1 − y0‖ < 2r and let z1 ∈ B(0, 1) be
such that y1 = Mz1. Then B(y1, 2r) ⊂ B(y0, 4r) ⊂ M(B(0, 1)). Thus if
‖y‖ < 2r, then y + y1 ∈ B(y1, 2r), and so

y = −Mz1 + (y + y1) ∈M(−z1 +B(0, 1)).

Since z1 ∈ B(0, 1), then −z1 +B(0, 1) ⊂ B(0, 2), hence

y ∈M(−z1 +B(0, 1)) ⊂M(B(0, 2)).

By the linearity of M , if ‖y‖ < r, then y ∈M(B(0, 1)). It follows by linearity
that if ‖y‖ < r2−n, then y ∈M(B(0, 2−n)). This can be rephrased as saying
that if ‖y‖ < r2−n and ε > 0, then there exists x such that ‖x‖ < 2−n and
‖y −Mx‖ < ε.

Step 2. Suppose ‖y‖ < r/2. We will construct a sequence {xj} by induction
such that y = M(

∑∞
j=1 xj). By Step 1 with ε = r/4, we can find x1 ∈
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B(0, 1/2) such that ‖y −Mx1‖ < r/4. Suppose we have chosen x1, . . . , xn−1
such that ∥∥∥y − n−1∑

j=1

Mxj

∥∥∥ < r2−n.

Let ε = r2−(n+1). By Step 1, we can find xn such that ‖xn‖ < 2−n and

∥∥∥y − n∑
j=1

Mxj

∥∥∥ =
∥∥∥(y − n−1∑

j=1

Mxj

)
−Mxn

∥∥∥ < r2−(n+1).

We continue by induction to construct the sequence {xj}. Let wn =
∑n

j=1 xj.

Since ‖xj‖ < 2−j, then wn is a Cauchy sequence. Since X is complete,
wn converges, say, to x. But then ‖x‖ <

∑∞
j=1 2−j = 1, and since M is

continuous, y = Mx. That is, if y ∈ B(0, r/2), then y ∈M(B(0, 1)).

Corollary 3.6 M maps open sets onto open sets.

Corollary 3.7 If M is one-to-one, onto, and bounded, then M−1 is bounded.

Proof. By the open mapping theorem, there exists d such that B(0, d) ⊂
M(B(), 1)). If u ∈ U with |u| = d/2, there exists x with |x| < 1 and
Mx = u. By homogeneity, if u ∈ BU(0, 1), there exists x ∈ X with Mx = u
and |x| < 2|u|/d. So x = M−1u and

‖M−1u‖ = ‖x‖ < 2‖u‖/d,

so |M−1| < 2/d.

3.5 Closed graph theorem

A map M : X → U is closed if whenever xn → x and MXn → u, then
Mx = u. This is equivalent to the graph {x,Mx} being a closed set.

If M is continuous, it is closed. If D is the differentiation operator on the
set of differentiable functions on [0, 1], then D is closed, but not continuous.
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Theorem 3.8 (Closed graph theorem) If X and U are Banach spaces and
M a closed linear map, then M is continuous.

Proof. Let G = {g = (x,Mx)} with norm ‖g‖ = ‖x‖ + ‖Mx‖. It is
easy to see that ‖g‖ is a norm, and we use the closedness of M to show
that G is complete: If gn = (xn,Mxn) is a Cauchy sequence in G, then
‖xn − xm‖ ≤ ‖gn − gm‖ is a Cauchy sequence, so xn converges, say to x.
‖Mxn −Mxm‖ ≤ ‖gn − gm‖, so Mxn is a Cauchy sequence in U , and hence
converges, say to y. Since G is closed, then y = Mx. Therefore gn converges
to (x,Mx).

Define P : G → X by P (x,Mx) = x, so that P is a projection onto the
first coordinate.

‖Pg‖ = ‖x‖ ≤ ‖x‖ + ‖Mx‖ = ‖g‖, so P is bounded with norm less than
or equal to 1. P is linear and one-to-one, and onto, so P−1 is bounded, i.e.,
there exists c such that c‖Pg‖ ≥ ‖g‖. So (c− 1)‖x‖ ≥ ‖Mx‖, which proves
M is bounded.

Corollary 3.9 Suppose X has two norms such that if ‖xn − x‖1 → 0 and
‖xn − y‖2 → 0, then x = y. Suppose X is complete with respect to both
norms. Then the norms are equivalent.

Proof. Let X1 = (X, ‖ · ‖1) and similarly X2. Let I : X1 → X2. The
hypothesis is equivalent to I being closed. Therefore I and I−1 are bounded.
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Chapter 4

Hilbert spaces

Hilbert spaces are complete normed linear spaces that have an inner product.
This added structure allows one to talk about orthonormal sets. We will
give the definitions and basic properties. As an application we briefly discuss
Fourier series.

4.1 Inner products

Recall that if a is a complex number, then a represents the complex conjugate.
When a is real, a is just a itself.

Definition 4.1 Let H be a vector space where the set of scalars F is either
the real numbers or the complex numbers. H is an inner product space if
there is a map 〈·, ·〉 from H ×H to F such that
(1) 〈y, x〉 = 〈x, y〉 for all x, y ∈ H;
(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H;
(3) 〈αx, y〉 = α〈x, y〉, for x, y ∈ H and α ∈ F ;
(4) 〈x, x〉 ≥ 0 for all x ∈ H;
(5) 〈x, x〉 = 0 if and only if x = 0.

We define ‖x‖ = 〈x, x〉1/2, so that 〈x, x〉 = ‖x‖2. From the definitions it
follows easily that 〈0, y〉 = 0 and 〈x, αy〉 = α〈x, y〉.

33
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The following is the Cauchy-Schwarz inequality. The proof is the same
as the one usually taught in undergraduate linear algebra classes, except for
some complications due to the fact that we allow the set of scalars to be the
complex numbers.

Theorem 4.2 For all x, y ∈ H, we have

|〈x, y〉| ≤ ‖x‖ ‖y‖.

Proof. Let A = ‖x‖2, B = |〈x, y〉|, and C = ‖y‖2. If C = 0, then y = 0,
hence 〈x, y〉 = 0, and the inequality holds. If B = 0, the inequality is obvious.
Therefore we will suppose that C > 0 and B 6= 0.

If 〈x, y〉 = Reiθ, let α = eiθ, and then |α| = 1 and α〈y, x〉 = |〈x, y〉| = B.
Since B is real, we have that α〈x, y〉 also equals |〈x, y〉|.

We have for real r

0 ≤ ‖x− rαy‖2

= 〈x− rαy, x− rαy〉
= 〈x, x〉 − rα〈y, x〉 − rα〈x, y〉+ r2〈y, y〉
= ‖x‖2 − 2r|〈x, y〉|+ r2‖y‖2.

Therefore
A− 2Br + Cr2 ≥ 0

for all real numbers r. Since we are supposing that C > 0, we may take
r = B/C, and we obtain B2 ≤ AC. Taking square roots of both sides gives
the inequality we wanted.

From the Cauchy-Schwarz inequality we get the triangle inequality :

Proposition 4.3 For all x, y ∈ H we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. We write

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,
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as desired.

The triangle inequality implies

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.

Therefore ‖ · ‖ is a norm on H, and so if we define the distance between x
and y by ‖x− y‖, we have a metric space.

Definition 4.4 A Hilbert space H is an inner product space that is complete
with respect to the metric d(x, y) = ‖x− y‖.

Example 4.5 Let µ be a positive measure on a set X, let H = L2(µ), and
define

〈f, g〉 =

∫
fg dµ.

As is usual, we identify functions that are equal a.e. H is easily seen to be a
Hilbert space. The completeness is a result of real analysis.

If we let µ be counting measure on the natural numbers, we get what is
known as the space `2. An element of `2 is a sequence a = (a1, a2, . . .) such
that

∑∞
n=1 |an|2 <∞ and if b = (b1, b2, . . .), then

〈a, b〉 =
∞∑
n=1

anbn.

We get another common Hilbert space, n-dimensional Euclidean space, by
letting µ be counting measure on {1, 2, . . . , n}.

Proposition 4.6 Let y ∈ H be fixed. Then the functions x → 〈x, y〉 and
x→ ‖x‖ are continuous.

Proof. By the Cauchy-Schwarz inequality,

|〈x, y〉 − 〈x′, y〉| = |〈x− x′, y〉| ≤ ‖x− x′‖ ‖y‖,

which proves that the function x → 〈x, y〉 is continuous. By the triangle
inequality, ‖x‖ ≤ ‖x− x′‖+ ‖x′‖, or

‖x‖ − ‖x′‖ ≤ ‖x− x′‖.
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The same holds with x and x′ reversed, so

| ‖x‖ − ‖x′‖ | ≤ ‖x− x′‖,

and thus the function x→ ‖x‖ is continuous.

4.2 Subspaces

Definition 4.7 A subset M of a vector space is a subspace if M is itself
a vector space with respect to the same operations of addition and scalar
multiplication. A closed subspace is a subspace that is closed relative to the
metric given by 〈·, ·〉.

For an example of a subspace that is not closed, consider `2 and let M be
the collection of sequences for which all but finitely many elements are zero.
M is clearly a subspace. Let xn = (1, 1

2
, . . . , 1

n
, 0, 0, . . .) and x = (1, 1

2
, 1
3
, . . .).

Then each xn ∈M , x /∈M , and we conclude M is not closed because

‖xn − x‖2 =
∞∑

j=n+1

1

j2
→ 0

as n→∞.

Since ‖x+y‖2 = 〈x+ y, x+ y〉 and similarly for ‖x−y‖2, ‖x‖2, and ‖y‖2,
a simple calculation yields the parallelogram law :

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (4.1)

A set E ⊂ H is convex if λx + (1 − λx) ∈ E whenever 0 ≤ λ ≤ 1 and
x, y ∈ E.

Proposition 4.8 Each non-empty closed convex subset E of H has a unique
element of smallest norm.

Proof. Let δ = inf{‖x‖ : x ∈ E}. Dividing (4.1) by 4, if x, y ∈ E, then

1
4
‖x− y‖2 = 1

2
‖x‖2 + 1

2
‖y‖2 −

∥∥∥x+ y

2

∥∥∥2.



4.2. SUBSPACES 37

Since E is convex, if x, y ∈ E, then (x+ y)/2 ∈ E, and we have

‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 − 4δ2. (4.2)

Choose yn ∈ E such that ‖yn‖ → δ. Applying (4.2) with x replaced by yn
and y replaced by ym, we see that

‖yn − ym‖2 ≤ 2‖yn‖2 + 2‖ym‖2 − 4δ2,

and the right hand side tends to 0 as m and n tend to infinity. Hence yn is a
Cauchy sequence, and since H is complete, it converges to some y ∈ H. Since
yn ∈ E and E is closed, y ∈ E. Since the norm is a continuous function,
‖y‖ = lim ‖yn‖ = δ.

If y′ is another point with ‖y′‖ = δ, then by (4.2) with x replaced by y′

we have ‖y − y′‖ = 0, and hence y = y′.

We say x ⊥ y, or x is orthogonal to y, if 〈x, y〉 = 0. Let x⊥, read “x perp,”
be the set of all y in X that are orthogonal to x. If M is a subspace, let M⊥

be the set of all y that are orthogonal to all points in M . The subspace M⊥

is called the orthogonal complement of M . It is clear from the linearity of the
inner product that x⊥ is a subspace of H. The subspace x⊥ is closed because
it is the same as the set f−1({0}), where f(x) = 〈x, y〉, which is continuous.
Also, it is easy to see that M⊥ is a subspace, and since

M⊥ = ∩x∈Mx⊥,

M⊥ is closed. We make the observation that if z ∈M ∩M⊥, then

‖z‖2 = 〈z, z〉 = 0,

so z = 0.

Lemma 4.9 Let M be a closed subspace of H with M 6= H. Then M⊥

contains a non-zero element.

Proof. Choose x ∈ H with x /∈M . Let E = {w− x : w ∈M}. It is routine
to check that E is a closed and convex subset of H. By Lemma 4.8, there
exists an element y ∈ E of smallest norm.
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Note y + x ∈M and we conclude y 6= 0 because x /∈M .

We show y ∈ M⊥ by showing that if w ∈ M , then 〈w, y〉 = 0. This is
obvious if w = 0, so assume w 6= 0. We know y + x ∈ M , so for any real
number t we have tw + (y + x) ∈ M , and therefore tw + y ∈ E. Since y is
the element of E of smallest norm,

〈y, y〉 = ‖y‖2 ≤ ‖tw + y‖2

= 〈tw + y, tw + y〉
= t2〈w,w〉+ 2tRe 〈w, y〉+ 〈y, y〉,

which implies
t2〈w,w〉+ 2tRe 〈w, y〉 ≥ 0

for each real number t. Choosing t = −Re 〈w, y〉/〈w,w〉, we obtain

−|Re 〈w, y〉|2

〈w,w〉
≥ 0,

from which we conclude Re 〈w, y〉 = 0.

Since w ∈ M , then iw ∈ M , and if we repeat the argument with w
replaced by iw, then we get Re 〈iw, y〉 = 0, and so

Im 〈w, y〉 = −Re (i〈w, y〉) = −Re 〈iw, y〉 = 0.

Therefore 〈w, y〉 = 0 as desired.

If in the proof above we set Px = y + x and Qx = −y, then Px ∈M and
Qx ∈M⊥, and we can write x = Px+Qx. We call Px and Qx the orthogonal
projections of x onto M and M⊥, resp. If we write x = w+ z = w′+ z′, with
w,w′ ∈ M and z, z′ ∈ M⊥, then w − w′ = z′ − z is in M and M⊥, hence 0.
Therefore each element of H can be written as the sum of an element of M
and an element of M⊥ in exactly one way.

Proposition 4.10 P and Q are linear operators.

Proof. Since
x+ y = (Px+Qx) + (Py +Qy)
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and also x+ y = P (x+ y) +Q(x+ y), we have

Px+ Py − P (x+ y) = Q(x+ y)−Qx−Qy.

The left hand side is in M , the right hand side in M⊥, so Px+Py = P (x+y)
and similarly for Q. To show P (kx) = kPx and Q(kx) = kQx is similar, so
P and Q are linear.

Proposition 4.11 Suppose M is a closed subspace of H. Then

1) M⊥ is a closed linear subspace of H.

2) H = M ⊕M⊥.

3) (M⊥)⊥ = M .

Proof. 1) (We don’t need M closed for this first part.) That M⊥ is a linear
subspace is easy. We already showed M⊥ is closed.

2) We proved this: write x = Px+Qx.

3) If y ∈ M , then for any v ∈ M⊥ we have (y, v) = 0, and hence y ∈
(M⊥)⊥. We thus need to show (M⊥)⊥ ⊂M .

By 2), H = M ⊕ M⊥. If y ∈ (M⊥)⊥, we can write y = v + z with
z ∈ M ⊂ (M⊥)⊥ and v ∈ M⊥. Then v = y − z ∈ (M⊥)⊥. Since v is also in
M⊥, we see v = 0, or y = z ∈M .

4.3 Riesz representation theorem

The following is sometimes called the Riesz representation theorem, although
usually that name is reserved for the theorem of real analysis about linear
functionals on the set of continuous functions. To motivate the theorem,
consider the case where H is n-dimensional Euclidean space. Elements of Rn

can be identified with n× 1 matrices and linear maps from Rn to Rm can be
represented by multiplication on the left by a m× n matrix A. For bounded
linear functionals on H, m = 1, so A is 1× n, and the y of the next theorem
is the vector associated with the transpose of A.
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Theorem 4.12 If L is a bounded linear functional on H, then there exists
a unique y ∈ H such that Lx = 〈x, y〉.

Proof. The uniqueness is easy. If Lx = 〈x, y〉 = 〈x, y′〉, then 〈x, y − y′〉 = 0
for all x, and in particular, when x = y − y′.

We now prove existence. If Lx = 0 for all x, we take y = 0. Otherwise, let
M = {x : Lx = 0}, take z 6= 0 in M⊥, and let y = αz where α = Lz/〈z, z〉.
Notice y ∈M⊥,

Ly =
Lz

〈z, z〉
Lz = |Lz|2/〈z, z〉 = 〈y, y〉,

and y 6= 0.

If x ∈ H and

w = x− Lx

〈y, y〉
y,

then Lw = 0, so w ∈M , and hence 〈w, y〉 = 0. Then

〈x, y〉 = 〈x− w, y〉 = Lx

as desired.

4.4 Lax-Milgram lemma

Theorem 4.13 (Lax-Milgram lemma) Let H be a Hilbert space and suppose
(1) for each y, B(x, y) is linear in x;
(2) for each x, B(x, y1 + y2) = B(x, y1) +B(x, y2) and B(x, cy) = cB(x, y);
(3) there exists c such that |B(x, y| ≤ c‖x‖ ‖y‖;
(4) there exists b such that |B(y, y)| ≥ b‖y‖2 for all y.

(We do not assume B(x, y) = B(y, x).) Then every bounded linear func-
tional ` is of the form `(x) = B(x, y) for some unique y.

Proof. For each y, B(x, y) is a bounded linear functional of x, so there
exists z = z(y) such that B(x, y) = (x, z) for all x, and z is unique.
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If Z = {z : z = z(y) for some y ∈ H}, then Z is a linear space.

Z is closed: setting x = y, and letting z = z(y),

b‖y‖2 ≤ B(y, y) = (y, z) ≤ c‖y‖ ‖z‖,

or
b‖y‖ ≤ ‖z‖.

If zn ∈ Z and zn → z, let yn be a point such that zn = z(yn). Then B(x, yn) =
(x, zn). So B(x, yn − ym) = (x, zn − zm), hence b‖yn − ym‖ ≤ ‖zn − zm‖, and
therefore yn is a Cauchy sequence. H is complete; let y be the limit. Since
B(x, yn)→ B(x, y) and (x, zn)→ (x, z), we have B(x, y) = (x, z), and hence
z ∈ Z.

Z = H: For each y, there exists z(y) such that B(x, y) = (x, z) for all
y. If Z 6= H, there exists x ∈ Z⊥. Applying the above with y = x, there
exists z(x) such that B(x, x) = (x, z(x)). Since x ∈ Z⊥ and z(x) ∈ Z,
b‖x‖2 ≤ B(x, x) = (x, z(x)) = 0. So x = 0.

Existence: given `, there exists y such that `(x) = (x, y) for all x. Then
`(x) = B(x, z(y)).

Uniqueness: if there are two such z, then B(x, z−z′) = B(x, z)−B(x, z′) =
`(x)− `(x) = 0. Now set x = z − z′.

4.5 Orthonormal sets

A subset {uα}α∈A of H is orthonormal if ‖uα‖ = 1 for all α and 〈uα, uβ〉 = 0
whenever α, β ∈ A and α 6= β.

The Gram-Schmidt procedure from linear algebra also works in infinitely
many dimensions. Suppose {xn}∞n=1 is a linearly independent sequence, i.e.,
no finite linear combination of the xn is 0. Let u1 = x1/‖x1‖ and define
inductively

vN = xN −
N−1∑
i=1

〈xN , ui〉ui,

uN = vN/‖vN‖.

We have 〈vN , ui〉 = 0 if i < N , so u1, . . . , uN are orthonormal.
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Proposition 4.14 If {uα}α∈A is an orthonormal set, then for each x ∈ H,∑
α∈A

|〈x, uα〉|2 ≤ ‖x‖2. (4.3)

This is called Bessel’s inequality. This inequality implies that only finitely
many of the summands on the left hand side of (4.3) can be larger than 1/n
for each n, hence only countably many of the summands can be non-zero.

Proof. Let F be a finite subset of A. Let

y =
∑
α∈F

〈x, uα〉uα.

Then

0 ≤ ‖x− y‖2 = ‖x‖2 − 〈x, y〉 − 〈y, x〉+ ‖y‖2.

Now

〈y, x〉 =
〈∑
α∈F

〈x, uα〉uα, x
〉

=
∑
α∈F

〈x, uα〉〈uα, x〉 =
∑
α∈F

|〈x, uα〉|2.

Since this is real, then 〈x, y〉 = 〈y, x〉. Also

‖y‖2 = 〈y, y〉 =
〈∑
α∈F

〈x, uα〉uα,
∑
β∈F

〈x, uβ〉uβ
〉

=
∑
α,β∈F

〈x, uα〉〈x, uβ〉〈uα, uβ〉

=
∑
α∈F

|〈x, uα〉|2,

where we used the fact that {uα} is an orthonormal set. Therefore

0 ≤ ‖y − x‖2 = ‖x‖2 −
∑
α∈F

|〈x, uα〉|2.

Rearranging, ∑
α∈F

|〈x, uα〉|2 ≤ ‖x‖2
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when F is a finite subset of A. If N is an integer larger than n‖x‖2, it is not
possible that |〈x, uα〉|2 > 1/n for more than N of the α. Hence |〈x, uα〉|2 6= 0
for only countably many α. Label those α’s as α1, α2, . . .. Then∑

α∈A

|〈x, uα〉|2 =
∞∑
j=1

|〈x, uαj〉|2 = lim
J→∞

J∑
j=1

|〈x, uαj〉|2 ≤ ‖x‖2,

which is what we wanted.

Proposition 4.15 Suppose {uα}α∈A is orthonormal. Then the following are
equivalent.
(1) If 〈x, uα〉 = 0 for each α ∈ A, then x = 0.
(2) ‖x‖2 =

∑
α∈A |〈x, uα〉|2 for all x.

(3) For each x ∈ H, x =
∑

α∈A 〈x, uα〉uα.

We make a few remarks. When (1) holds, we say the orthonormal set is
complete. (2) is called Parseval’s identity. In (3) the convergence is with
respect to the norm of H and implies that only countably many of the terms
on the right hand side are non-zero.

Proof. First we show (1) implies (3). Let x ∈ H. By Bessel’s inequal-
ity, there can be at most countably many α such that |〈x, uα〉|2 6= 0. Let
α1, α2, . . . be an enumeration of those α. By Bessel’s inequality, the series∑

i |〈x, uαi〉|2 converges. Using that {uα} is an orthonormal set,∥∥∥ n∑
j=m

〈x, uαj〉uαj
∥∥∥2 =

n∑
j,k=m

〈x, uαj〉〈x, uαk〉〈uαj , uαk〉

=
n∑

j=m

|〈x, uαj〉|2 → 0

as m,n → ∞. Thus
∑n

j=1 〈x, uαj〉uαj is a Cauchy sequence, and hence
converges. Let z =

∑∞
j=1 〈x, uαj〉uαj . Then 〈z − x, uαj〉 = 0 for each αj. By

(1), this implies z − x = 0.

We see that (3) implies (2) because

‖x‖2 −
n∑
j=1

|〈x, uαj〉|2 =
∥∥∥x− n∑

j=1

〈x, uαj〉uαj
∥∥∥2 → 0.
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That (2) implies (1) is clear.

Example 4.16 Take H = `2 = {x = (x1, x2, . . .) :
∑
|xi|2 < ∞} with

〈x, y〉 =
∑

i xiyi. Then {ei} is a complete orthonormal system, where ei =
(0, 0, . . . , 0, 1, 0, . . .), i.e., the only non-zero coordinate of ei is the ith one.

If K is a subset of a Hilbert space H, the set of finite linear combinations
of elements of K is called the span of K.

A collection of elements {eα} is a basis for H if the set of finite linear
combinations of the eα is dense in H. A basis, then, is an orthonormal
subset of H such that the closure of its span is all of H.

Proposition 4.17 Every Hilbert space has an orthonormal basis.

This means that (3) in Proposition 4.15 holds.

Proof. If B = {uα} is orthonormal, but not a basis, let V be the closure of
the linear span of B, that is, the closure with respect to the norm in H of
the set of finite linear combinations of elements of B. Choose x ∈ V ⊥, and
if we let B′ = B ∪ {x/‖x‖}, then B′ is a basis that is strictly bigger than B.

It is easy to see that the union of an increasing sequence of orthonormal
sets is an orthonormal set, and so there is a maximal one by Zorn’s lemma.
By the preceding paragraph, this maximal orthonormal set must be a basis,
for otherwise we could find a larger basis.

4.6 Fourier series

An interesting application of Hilbert space techniques is to Fourier series,
or equivalently, to trigonometric series. For our Hilbert space we take
H = L2([0, 2π)) and let

un =
1√
2π
einx
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for n an integer. (n can be negative.) Recall that

〈f, g〉 =

∫ 2π

0

f(x)g(x) dx

and ‖f‖2 =
∫ 2π

0
|f(x)|2 dx.

It is easy to see that {un} is an orthonormal set:∫ 2π

0

einxe−imx dx =

∫ 2π

0

ei(n−m)x dx = 0

if n 6= m and equals 2π if n = m.

Let F be the set of finite linear combinations of the un, i.e., the span of
{un}. We want to show that F is a dense subset of L2([0, 2π)). The first
step is to show that the closure of F with respect to the supremum norm is
equal to the set of continuous functions f on [0, 2π) with f(0) = f(2π). We
will accomplish this by using the Stone-Weierstrass theorem.

We identify the set of continuous functions on [0, 2π) that take the same
value at 0 and 2π with the continuous functions on the circle. To do this, let
S = {eiθ : 0 ≤ θ < 2π} be the unit circle in C. If f is continuous on [0, 2π)

with f(0) = f(2π), define f̃ : S → C by f̃(eiθ) = f(θ). Note ũn(eiθ) = einθ.

Let F̃ be the set of finite linear combinations of the ũn. S is a compact
metric space. Since the complex conjugate of ũn is ũ−n, then F̃ is closed
under the operation of taking complex conjugates. Since ũn · ũm = ũn+m,
it follows that F is closed under the operation of multiplication. That it is
closed under scalar multiplication and addition is obvious. ũ0 is identically
equal to 1, so F̃ vanishes at no point. If θ1, θ2 ∈ S and θ1 6= θ2, then θ1 − θ2
is not an integer multiple of 2π, so

ũ1(θ1)

ũ1(θ2)
= ei(θ1−θ2) 6= 1,

or ũ1(θ1) 6= ũ1(θ2). Therefore F separates points. By the Stone-Weierstrass
theorem, the closure of F with respect to the supremum norm is equal to
the set of continuous complex-valued functions on S.

If f ∈ L2([0, 2π)), then∫
|f − fχ[1/m,2π−1/m]|2 → 0
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by the dominated convergence theorem as m→∞. Recall that any function
in L2([1/m, 2π − 1/m]) can be approximated in L2 by continuous functions
which have support in the interval [1/m, 2π − 1/m]. By what we showed
above, a continuous function with support in [1/m, 2π − 1/m] can be ap-
proximated uniformly on [0, 2π) by elements of F . Finally, if g is continuous
on [0, 2π) and gm → g uniformly on [0, 2π), then gm → g in L2([0, 2π)) by
the dominated convergence theorem. Putting all this together proves that F
is dense in L2([0, 2π)).

It remains to show the completeness of the un. If f is orthogonal to each
un, then it is orthogonal to every finite linear combination, that is, to every
element of F . Since F is dense in L2([0, 2π)), we can find fn ∈ F tending to
f in L2. Then

‖f‖2 = |〈f, f〉| ≤ |〈f − fn, f〉|+ |〈fn, f〉|.

The second term on the right of the inequality sign is 0. The first term on the
right of the inequality sign is bounded by ‖f−fn‖ ‖f‖ by the Cauchy-Schwarz
inequality, and this tends to 0 as n → ∞. Therefore ‖f‖2 = 0, or f = 0,
hence the {un} are complete. Therefore {un} is a complete orthonormal
system.

Given f in L2([0, 2π)), write

cn = 〈f, un〉 =

∫ 2π

0

fun dx =
1√
2π

∫ 2π

0

f(x)e−inx dx,

the Fourier coefficients of f . Parseval’s identity says that

‖f‖2 =
∑
n

|cn|2.

For any f in L2 we also have ∑
|n|≤N

cnun → f

as N →∞ in the sense that∥∥∥f − ∑
|n|≤N

cnun

∥∥∥
2
→ 0



4.7. THE RADON-NIKODYM THEOREM 47

as N →∞.

Using einx = cosnx+ i sinnx, we have

∞∑
n=−∞

cne
inx = A0 +

∞∑
n=1

Bn cosnx+
∞∑
n=1

Cn sinnx,

where A0 = c0, Bn = cn + c−n, and Cn = i(cn − c−n). Conversely, using
cosnx = (einx + e−inx)/2 and sinnx = (einx − e−inx)/2i,

A0 +
∞∑
n=1

Bn cosnx+
∞∑
n=1

Cn sinnx =
∞∑

n=−∞

cne
inx

if we let c0 = A0, cn = Bn/2 + Cn/2i for n > 0 and cn = Bn/2 − Cn/2i for
n < 0. Thus results involving the un can be transferred to results for series
of sines and cosines and vice versa.

If cn are the Fourier coefficients of f , then

N∑
−N

cn =
1

2π

∫ π

−π
f(θ)kN(θ) dθ,

where

kN(θ) =
N∑

n=−N

e−inθ = eiNθ
(e−(2N+1)iθ − 1

e−iθ − 1

)
=
e−(N+1)iθ − eiNθ

e−iθ − 1

=
e−(N+ 1

2
)iθ − ei(N+ 1

2
)θ

e−iθ/2 − eiθ/2

=
sin(N + 1

2
)θ

sin θ/2
.

4.7 The Radon-Nikodym theorem

We can use Hilbert space techniques to give an alternate proof of the Radon-
Nikodym theorem.
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Suppose µ and ν are finite measures on a space S and we have the condition
ν(A) ≤ µ(A) for all measurable A. For f ∈ L2(µ), define

`(f) =

∫
f dν.

Our condition implies
∫
h dν ≤

∫
h dµ if h ≥ 0. We use this with h = |f |,

use Cauchy-Schwarz, and obtain

|`(f)| =
∣∣∣ ∫ f dν

∣∣∣ ≤ ∫ |f | dν ≤ ∫ |f | dµ
≤
(
µ(S)

)1/2(∫
f 2 dµ

)1/2
≤ c‖f‖L2(µ).

There exists g such that `(f) = 〈f, g〉, which translates to∫
f dν =

∫
fg dµ.

Letting f = χA, we get ν(A) =
∫
A
g dµ.

If ν is absolutely continuous with respect to µ, we let ρ = µ+ν and apply
the above to ν and ρ and also to µ and ρ. The absolute continuity implies
that dµ/dρ > 0 a.e., and we use

dν

dµ
=
dν

dρ

/dµ
dρ
.

4.8 The Dirichlet problem

Let D be a bounded domain in Rn, contained in B(0, K), say, where this
is the ball of radius K about 0. Let 〈f, g〉 be the usual L2 scalar product
for real valued functions. It is easy to see that if C∞0 (D) is the set of C∞

functions that vanish on the boundary of D, then the completion of C∞(D)
with respect to the L2 norm is simply L2(D). Define

E(f, g) =

∫
D

〈∇f(x),∇g(x)〉 dx.

Clearly E is bilinear and symmetric.
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If we start with

f(x1, . . . , xn) =

∫ x1

−K

∂f

∂x1
(y, x2, . . . , xn) dy

and apply Cauchy-Schwarz, we have

|f(x1, . . . , xn)|2 ≤
∫ K

−K
1 dy

∫ K

−K
|∇f(y, x2, . . . , xn)|2 dy.

Integrating over (x2, . . . , xn) ∈ [−K,K]n−1 we obtain∫
D

|f(x)|2 dx ≤ c

∫
D

|∇f(x)|2 dx,

or in other words,

〈f, f〉 ≤ cE(f, f).

If E(f, f) = 0, then 〈f, f〉 = 0, and so f = 0 (a.e., of course). This proves
that E is positive. We let H1

0 be the completion of C∞0 (D) with respect to
the norm induced by E . The superscript 1 refers to the fact we are working
with first derivatives, the subscript 0 to the fact that our functions vanish on
the boundary. E is an example of a Dirichlet form.

Recall the divergence theorem:∫
∂D

(F, n) dσ =

∫
D

divF dx,

where D is a reasonably smooth domain, ∂D is the boundary of D, n is the
outward pointing unit normal, and σ is surface measure. In three dimensions,
this is also known as Gauss’ theorem, and along with Green’s theorem and
Stokes’ theorem are consequences of the fundamental theorem of calculus.

If we apply the divergence theorem to F = u∇v, then

∂

∂x1
F1 =

∂u

∂x1

∂v

∂x1
+ u

∂2v

∂x21
,

and so

divF = 〈∇u,∇v〉+ u∆v,
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where ∆v is the Laplacian. Also,

〈divF, n〉 = u
∂v

∂n
,

where ∂v
∂n

is the normal derivative of v. We then get Green’s first identity:∫
D

u∆v +

∫
D

〈∇u,∇v〉 =

∫
∂D

u
∂v

∂n
.

Our goal is to solve the equation ∆v = g in D with v = 0 on the boundary
of D. This is Poisson’s equation, while the Dirichlet problem more properly
refers to the equation ∆v = 0 in D with v equal to some pre-specified
function f on the boundary of D.

If we have a solution v and u ∈ C∞0 (D), then by Green’s identity we get∫
D

u(x)g(x) dx = −
∫
D

〈∇u(x),∇v(x)〉 dx.

So one way of formulating a (weak) solution to Poisson’s equation is: given
g ∈ L2(D), find v ∈ H1

0 such that

E(u, v) = −
∫
ug

for all u ∈ C∞0 (D).

After all this, it is easy to find a weak solution to the Poisson equation.
Suppose g ∈ H1

0 . Define `(u) = −(u, g). Then

|`(u)| ≤ ‖g‖ ‖u‖ ≤ c‖g‖E(u, u)1/2.

By the Riesz representation theorem for Hilbert spaces, there exists v ∈ H1
0

such that `(u) = E(u, v) for all u. So

E(u, v) = `(u) = −〈u, g〉,

and v is the desired solution.



Chapter 5

Duals of normed linear spaces

5.1 Bounded linear functionals

If X is a normed linear space, a linear functional ` is a linear map from X to
F , the field of scalars. ` is continuous if ‖xn − x‖ → 0 implies `(xn)→ `(x).
` is bounded if there exists c such that |`(x)| ≤ c‖x‖ for all x.

Theorem 5.1 A linear functional ` is continuous if and only if it is bounded.

This is a special case of Proposition 2.1.

The collection of all continuous linear functionals of X is called the dual
of X, written X ′ or X∗.

Note N` = `−1({0}) is closed, since ` is continuous.

Define

‖`‖ = sup
‖x‖6=0

|`(x)|
‖x‖

.

By linearity, this is the same as sup‖x‖=1 |`(x)|.

Proposition 5.2 X∗ is a Banach space.

This is Proposition 3.2.

51
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5.2 Extensions of bounded linear functionals

Proposition 5.3 Let X be a normed linear space, Y a subspace, ` a linear
functional on Y with |`(y)| ≤ c‖y‖ for all y ∈ Y . Then ` can be extended to
a bounded linear functional on X with the same bound on X as on Y .

Proof. This is the Hahn-Banach theorem with p(x) = c‖x‖.

y1, . . . , yN are said to be linearly independent if
∑N

i=1 ciyi = 0 implies all
the ci are zero.

Theorem 5.4 Suppose y1, . . . , yN are linearly independent and a1, . . . , aN
are scalars. Then there exists a bounded linear functional ` such that `(yj) =
aj.

Proof. Let Y be the span of y1, . . . , yN . If y ∈ Y , then y can be written as∑
bjyj in only one way, for if

∑
b′jyj is another way, then∑

(bj − b′j)yj = y − y = 0,

and so bj = b′j for all j. Define

`
(∑

bjyj

)
=
∑

ajbj.

Now use the preceding theorem to extend ` to all of X.

Theorem 5.5 If X is a normed linear space, then

‖y‖ = max
‖`‖=1

|`(y)|.

Proof. |`(y)| ≤ ‖`‖ ‖y‖, so the maximum on the right hand side is less than
or equal to y.

If y ∈ X, let Y = {ay} and define `(ay) = a‖y‖. Then the norm of ` on
Y is 1. Now extend ` to all of X so as to have norm 1.
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Theorem 5.6 (Spanning criterion) Let Y be the closed linear span of {yj}.
Suppose that whenever ` is a bounded linear functional such that `(yj) = 0
for all j, then `(z) = 0. We conclude that z ∈ Y .

Proof. If `(yj) = 0 for all j, then `(y) for all y of the form
∑
ajyj, and by

continuity of `, for all y ∈ Y .

Suppose z /∈ Y . Then

inf
y∈Y
‖z − y‖ = d > 0.

Let Z = {y+ az : y ∈ Y }. Define `0 on Z by `0(y+ az) = a. We note that `
is well defined, since if y+ az = y′+ a′z, then (a′− a)z = y− y′. Since z /∈ Y
and y − y′ ∈ Y , then a′ − a = 0, and it follows that y = y′. Then

‖y + az‖ = |a|
∥∥∥− −y

a
+ z
∥∥∥ ≥ d‖a‖.

Therefore on Z, `0 is bounded by d−1. Extend `0 to all of X. But then
`0(yj) = 0 while `0(z) = 1.

5.3 Uniform boundedness

Theorem 5.7 Let X be a Banach space and {`ν} a collection of bounded
functionals such that |`ν(x)| ≤M(x) for all ν and each x. Then there exists
c such that ‖`ν‖ ≤ c.

In other words, if the `ν are bounded pointwise, they are bounded uni-
formly.

This is just a special case of the uniform boundedness principle (Banach-
Steinhaus theorem).

5.4 Reflexive spaces

If x ∈ X, define the linear functional Lx on X∗ by

Lx(`) = `(x).



54 CHAPTER 5. DUALS OF NORMED LINEAR SPACES

It is clear that Lx is linear. Since

|Lx(`)| = |`(x)| ≤ ‖`‖ ‖x‖,

we see that ‖Lx‖ ≤ ‖x‖. Define `′ on Y = {ax} by `′(ax) = a‖x‖. Note the
norm of `′ on Y is 1. Use Hahn-Banach to extend this to a linear functional
on X. Then

|Lx(`′)| = |`′(x)| = ‖x‖,

and since ‖`′‖ = 1, we conclude ‖Lx‖ = ‖x‖. So we can isomorphically
embed X into X∗∗.

Corollary 5.8 Let X be a normed linear space, {xν} a subset such that for
all ` ∈ X∗ we have

|`(xν)| ≤M(`) for all xν .

Then there exists c such that |xν | ≤ c for all xν.

Proof. Write Lν(`) = `(xν). So each xν acts as a bounded linear functional
on X∗.

A Banach space is reflexive if X∗∗ = X.

If 1 < p, q < ∞ and 1
p

+ 1
q

= 1, then the dual of Lp is isomorphic to Lq.
Hence the Lp spaces are reflexive.

Theorem 5.9 Hilbert spaces are reflexive.

Proof. Recall X∗ = X, and the result follows from this. To see X∗ = X,
if ` is a linear functional, there exists y such that `(x) = 〈x, y〉 for all x. If
we show |`| = ‖y‖, this gives an isometry between X and X∗. By Cauchy-
Schwarz, |`(x)| = |〈x, y〉| ≤ ‖x‖ ‖y‖, so ‖`‖ ≤ ‖y‖. Taking x = y, `(y) =
‖y‖2, hence ‖`‖ ≥ ‖y‖.

Proposition 5.10 If X is a normed linear space over C and X∗ is separable,
then X is separable.
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Proof. Since X∗ is separable, there is a countable dense subset {`n}. Recall
‖`n‖ = sup‖x‖=1 |`n(x)|. So for each n there exists xn ∈ X such that ‖xn‖ = 1

and `n(xn) > 1
2
‖`n‖.

We claim the linear span of {xn} is dense in X. To prove this, we start
by showing that if ` is a linear functional on X that vanishes on {xn}, then
` vanishes identically.

Suppose not and that there exists ` such that `(xn) = 0 for all xn but
` 6= 0. We can normalize so that ‖`‖ = 1. Since the `n are dense in X∗, there
exists `n such that ‖`− `n‖ < 1/3. Therefore ‖`n‖ > 2/3. Then

1
3
> |(`− `n)(xn)| = |`n(xn)| > 1

2
‖`n‖ > 1

2
· 2
3
,

a contradiction.

If z ∈ X, any linear functional that vanishes on {xn} is identically zero.
By the spanning criterion, z is in the closed linear span of the xn, and thus
the closed linear span is all of X. Then the set of finite linear combinations
of the xn where all the coefficients have rational coordinates, is also dense in
X, and is countable.

By the Riesz representation theorem from real analysis, the dual of X =
C([0, 1]) is the set of finite signed measures on [0, 1]. X is separable, but
X∗ is not, since ‖δx − δy‖ = 2 whenever x 6= y. It follows that X is not
reflexive: if it were, we would have X∗∗ separable, but X∗ not, contradicting
the previous proposition.

5.5 Weak convergence

Let X be a normed linear space. We say xn converges to x weakly, written
w − limxn = x or xn

w−→x if `(xn)→ `(x) for all ` ∈ X∗.
xn converges to x strongly, written s− limxn = x or xn

s−→x if ‖xn−x‖ →
0.

Strong convergence implies weak convergence because

|`(xn)− `(x)| = |`(xn − x)| ≤ ‖`‖ ‖xn − x‖ → 0.
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As an example where we have weak convergence but not strong conver-
gence, let X = `2 and let en be the element whose nth coordinate is 1 and
all other coordinate coordinates are 0. Since ‖en‖ = 1, then en does not
converge strongly to 0. But it does converge weakly to 0. To see this, if ` is
any bounded linear functional on X, then ` is of the form `(x) = 〈x, y〉 for
some y ∈ X, which means y = (b1, b2, . . .) with

∑
j |bj|2 <∞. In particular,

bj → 0. Then `(en) = bn → 0 = `(0).

This example stretches to any Hilbert space. If {xn} is an orthonormal
sequence in the space, `(xn) = 〈xn, y〉 for some y. By Bessel’s inequality,∑
|〈xn, y〉|2 ≤ ‖y‖2, so 〈xn, y〉 → 0,

Proposition 5.11 Let X be a normed linear space and suppose xn converges
weakly to x. Then ‖x‖ ≤ lim inf ‖xn‖.

Proof. There exists ` such that ‖`‖ = 1 and |`(x)| = ‖x‖. Then |`(x)| =
lim |`(xn)| and |`(xn)| ≤ ‖`‖ ‖xn‖ = ‖xn‖.

5.6 Weak∗ convergence

We say un ∈ X∗ is weak∗ convergent to u if limun(x) = u(x) for all x ∈ X.

If X is reflexive, then weak∗ convergence is the same as weak convergence.

Weak convergence in probability theory can be identified as weak∗ con-
vergence in functional analysis.

As an example, if S is a compact Hausdorff space and X = C(S), then
X∗ is the collection of finite signed measures. Saying a sequence of mea-
sures νn converges in the weak∗ sense means that

∫
f dνn converges for each

continuous function f .

A set is weak∗ sequentially compact if every sequence in the set has a
subsequence which converges in the weak∗ sense to an element of the set.
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5.7 Approximating the δ function

Let kn be a sequence of integrable functions on the interval [−1, 1]. They
approximate the δ function (or are an approximation to the identity) if∫ 1

−1
f(t)kn(t) dt→ f(0) (5.1)

as n→∞ for all f continuous on [−1, 1].

As an example, we could take kn(t) = nχ[0,1/n](t).

Theorem 5.12 kn approximates the δ function on [−1, 1] if and only if the
following three properties hold.

(1)
∫ 1

−1 kn(t) dt→ 1.

(2) If g is C∞ and 0 in a neighborhood of 0, then∫ 1

−1
g(t)kn(t) dt→ 0

as n→∞.

(3) There exists c such that
∫ 1

−1 |kn(t)| dt ≤ c for all n.

Proof. If (1)–(3) hold, write f = (f − f(0)) + f(0), and we may suppose
without loss of generality that f(0) = 0. Choose g ∈ C∞ such that g is 0 in
a neighborhood of 0 and ‖g − f‖ < ε. We have∣∣∣ ∫ 1

−1
(f − g)kn

∣∣∣ ≤ ε

∫
|kn| ≤ cε

and ∫
gkn → 0.

So

lim sup
∣∣∣ ∫ fkn

∣∣∣ ≤ cε.

Since ε is arbitrary, this shows (5.1).
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If (5.1) holds, then (1) holds by taking f identically 1 and (2) holds by
taking f equal to g. So we must show (3). If X is the set C of continuous
functions on [−1, 1], then X∗ is the collection of finite signed measures (by
the Riesz representation theorem of real analysis). Let mn(dt) = kn(t) dt and
m0(dt) = δ0(dt). Then (5.1) says that mn(f) → m0(f) for all f ∈ C, or mn

converges to m0 in the sense of weak-∗ convergence. lim sup |mn(f)| < ∞,
so |mn(f)| ≤ M(f) for all f , and by the uniform boundedness principle,
‖mn‖ ≤ c. Note by the proof of the Riesz representation theorem, ‖mn‖ is

the total mass of mn, which is
∫ 1

−1 |kn(t)| dt.

From the approximation of the δ-function, we can show that there exists
a continuous function f whose Fourier series diverges at 0.

We look at the set of continuous functions on S1, the unit circle. We say
f(θ) has Fourier series

∑∞
−∞ ane

inθ with

an =
1

2π

∫ π

−π
f(θ)e−inθ dθ.

The Fourier series converges at 0 if

lim
N→∞

N∑
−N

an = f(0).

Recall from Section 4.6 that

N∑
−N

an =
1

2π

∫ π

−π
f(θ)kN(θ) dθ,

where

kN(θ) ==
sin(N + 1

2
)θ

sin θ/2
.

So the convergence of the Fourier series at 0 is equivalent to kN being an
approximation to the δ function. And if (3) fails, then

∑N
−N an does not

converge for some f .

Since | sinx| ≤ |x|, then ∣∣∣ 1

sinx/2

∣∣∣ ≥ 2

|x|
,
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and therefore ∫ π

−π
|kN(θ)| dθ ≥ 2

∫ π

−π
| sin(N + 1

2
)θ|dθ
|θ|

= 4

∫ (N+
1
2
)π

0

| sinx|dx
x

≥ c logN

5.8 Weak and weak∗ topologies

The weak topology is the coarsest topology (i.e., fewest sets) in which all
bounded linear functionals are continuous.

Bounded linear functionals are continuous in the usual norm topology
(also called the strong topology), so the weak topology is coarser than the
strong topology.

Recall that a topology is a collection of sets that contain ∅ and X and
which is closed under arbitrary unions and finite intersections. Elements of
the topology are called open sets. A subcollection of a topology is a basis if
every open set can be written as the union of elements of the subcollection.
A subcollection of the topology is a subbasis is the set of finite intersections
of elements of the subcollection is a basis.

Let S be the collection of sets of the form

{x : a < `(x) < b}

for reals a < b and ` ∈ X∗.

Proposition 5.13 If we are considering real-valued bounded linear function-
als, then S is a subbasis for the weak topology.

Proof. Since ` is continuous in the weak topology and {x : a < `(x) < b} =
`−1((a, b)), then S is a subcollection of the weak topology.

Any topology with respect to which all bounded linear functionals are
continuous must contain S, and the smallest such is the topology generated
by S.



60 CHAPTER 5. DUALS OF NORMED LINEAR SPACES

Finite intersections of sets in S are unbounded if X is infinite dimensional,
so every open set in the weak topology when X is infinite dimensional is
unbounded. The open unit ball ({x : ‖x‖ < 1}) is a set that is open in the
strong topology but not the weak topology.

5.9 The Alaoglu theorem

Consider X∗, where X is a Banach space. For x ∈ X, define Lx : X∗ → R
by Lx(`) = `(x). The weak∗ topology is the coarsest topology on X∗ with
respect to which all the Lx with x ∈ X are continuous. As above, a subbasis
for the weak∗ topology is the collection of sets {` : a < `(x) < b}, where
a < b ∈ R and x ∈ X.

Lemma 5.14 Suppose f is a function from a topological space (X, T ) to a
topological space (Y,U). Let S be a subbase for Y . If f−1(G) ∈ T whenever
G ∈ S, then f is continuous.

Proof. Let B be the collection of finite intersections of elements of S. By
the definition of subbase, B is a base for Y . Suppose H = G1 ∩G2 ∩ · · · ∩Gn

with each Gi ∈ S. Since f−1(H) = f−1(G1) ∩ · · · ∩ f−1(Gn) and T is closed
under the operation of finite intersections, then f−1(H) ∈ T . If J is an open
subset of Y , then J = ∪α∈IHα, where I is a non-empty index set and each
Hα ∈ B. Then f−1(J) = ∪α∈If−1(Hα), which proves f−1(J) ∈ T . That is
what we needed to show.

Recall that the product topology on
∏

α∈I Xα is the one generated by the
sets {π−1α (G) : α ∈ I,G open in Xα}. Here πβ is the projection of

∏
α∈I Xα

onto Xβ, that is, if x = {xα} so that xα is the αth coordinate of x, then
πβ(x) = xβ.

Theorem 5.15 ( Alaoglu theorem) The closed unit ball B in X∗ is compact
in the weak∗ topology.

There is a connection with the Prohorov theorem of probability theory.
Let X = C(S) where S is a compact Hausdorff space. If µn is a sequence of
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probability measures, then the µn are elements of the closed unit ball in X∗.
The Alaoglu theorem implies there must be a subsequence which converges
in the weak∗ sense.

Proof. If ` ∈ B, then |`(x)| ≤ ‖x‖. Let

P =
∏
x∈X

Ix,

where Ix = [−‖x‖, ‖x‖]. Map B into P by setting ϕ(`) = {`(x)}, the function
whose xth coordinate is `(x).

We will show that ϕ is one-to-one, continuous, and onto ϕ(B). Hence
to show B is compact, it suffices to show ϕ(B) is compact. By Tychonov’s
theorem, P is compact. So it suffices to show that ϕ(B) is closed.

That ϕ is one-to-one is obvious. To show ϕ is continuous, we use the lemma
and show that ϕ−1(G) is open when G is a subbasic open set in the product
topology. The collection of sets {{f ∈ P : a < f(x) < b}, x ∈ X, a < b ∈ R}
is a subbasis for the product topology. If G is such a set, then

ϕ−1(G) = {` ∈ B : a < `(x) < b} = {` ∈ B : a < Lx(`) < b}

is open in the weak∗ topology. To show ϕ is open, we need to show, using the
lemma, that ϕ(G) is relatively open in P if G is of the form {` : a < `(x) < b}.
But then ϕ(G) = {f ∈ ϕ(B) : a < f(x) < b} is relatively open in P .

Let p be in the closure of ϕ(B). We will show p = ϕ(`) for some ` ∈ B.
Fix x, y ∈ X and c ∈ R. If we show that p(x + y) = p(x) + p(y) and
p(cx) = cp(x), then p will be equal to ϕ(`) for a linear functional on X.
Since p ∈ ϕ(B) ⊂ P , then |p(x)| ≤ ‖x‖ for each x, and p will be equal to
ϕ(`) for ` ∈ B, which finishes the proof.

We prove that p(x+ y) = p(x) + p(y). For each m, the set

{f ∈ P : p(x)− 2−m < f(x) < p(x) + 2−m, p(y)− 2−m < f(y) < p(y) + 2−m,

p(x+ y)− 2−m < f(x+ y) < p(x+ y) + 2−m}

is the intersection of three subbasic sets in the product topology, and hence
is open. Since p is a limit point of ϕ(B), there exists qm in B such that
ϕ(qm) is in this set. We conclude ϕ(qm)(x) → p(x), and similarly with
x replaced by y and by x + y. Since qm is a bounded linear functional,
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qm(x + y) = qm(x) + qm(y). Passing to the limit, p(x + y) = p(x) + p(y) as
required.

5.10 Transpose of a bounded linear map

Suppose M : X → U . We define the transpose M ′ (or M∗) as follows.
M ′ : U∗ → X∗. If ` ∈ U∗, `(Mx) is a linear functional on X, and we call
this linear functional M ′`.

Sometimes the notation `(u) = 〈u, `〉. With this notation,

〈Mx, `〉 = `(Mx) = M ′`(x) = 〈x,M ′`〉,

which justifies the name adjoint or transpose.

Proposition 5.16 (1) M ′ is bounded and ‖M ′‖ = ‖M‖.
(2) (M +N)′ = M ′ +N ′.

(3) If M : X → U and N : U → W are linear, then (NM)′ = M ′N ′.

Proof. (1) ‖M ′‖ = sup‖`‖=1 ‖M ′`‖ (recall M ′` ∈ X∗) and

‖M ′`‖ = sup
‖x‖=1

|M ′`(x)| = sup
‖x‖=1

|`(Mx)|.

So
‖M ′‖ = sup

‖`‖=1,‖x‖=1

|`(Mx)| = sup
‖x‖=1

‖Mx‖ = ‖M‖.

(2) is easy.

To prove (3), we write

m(NM)x = (N ′m)(Mx) = (M ′N ′m)(x),

so m(NM) = M ′N ′m), and our result follows.



Chapter 6

Convexity

6.1 Locally convex topological spaces

We look at topologies other than those defined in terms of linear functionals.

A topological linear space is a linear space over the reals with a Hausdorff
topology satisfying
(1) (x, y)→ x+ y is a continuous mapping from X ×X → R.
(2) (k, x)→ kx is a continuous mapping from F ×X → X.
If in addition,
3) Every open set containing the origin contains a convex open set containing
the origin
then we have a locally convex topological linear space (LCT).

It is an exercise to show that the weak and weak∗ topologies are locally
convex (i.e., satisfy (3)).

Topological linear spaces just satisfying (1) and (2) are not satisfactory,
because there may not be enough linear functionals. If we have (3), then
we can use the hyperplane separation theorem to produce linear functionals.
Thus convexity is important.

Proposition 6.1 In a LCT linear space,

(1) if T is open, so are T − x0, kT , and −T .

(2) Every point of an open set T is interior to T .

63
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Proof. (1) The map ϕ : y → x0 + y is the composition of the maps y →
(x0, y) and (x0, y)→ x0 + y. If A and B are open in X, the inverse image of
A × B under the first map is B if x0 ∈ A and ∅ if x0 /∈ A, which is open in
either case. By Lemma 5.14, since the inverse image of subbasic sets is open,
the first map is continuous. Therefore ϕ is continuous. T − x is the inverse
image of T under ϕ. kT is similar.

(2) Suppose 0 ∈ T . Fix x ∈ X. k → kx is continuous, so {k : kx ∈ T} is
open. Since 0 ∈ T , then 0 is in this set, and therefore there exists an interval
about 0 such that kx ∈ T if k is in this interval. This is true for all x, and
therefore 0 is an interior point. Use translation if the point we are interested
in is other than 0.

6.2 Separation of points

In a LCT space, we can talk about continuous linear functionals, but not
bounded linear functionals.

Proposition 6.2 Continuous linear functionals in a LCT linear space X
separate points: if y 6= z, there exists ` such that `(y) 6= `(z).

Proof. Without loss of generality assume y = 0. There exists an open set
T that contains 0 but not z, since the topology is Hausdorff. We can take T
to be convex. By looking at T ∩ (−T ), we may assume that T is symmetric,
that is, T = −T . 0 ∈ T is interior, so the gauge function pT is finite. Recall
pT (u) < 1 if u ∈ T .

By the hyperplane separation theorem, there exists ` such that `(z) = 1
and `(x) ≤ pT (x) for all x. Since `(y) = `(0), then ` separates.

It remains to prove that ` is continuous.

We first show H = {w : `(w) < c} is open. If w ∈ H and u ∈ T , let
r = c− `(w). Then

`(w + ru) = `(w) + r`(u) ≤ `(w) + rpT (u) < `(w) + c− `(w) = c,

so w + ru ∈ H. Therefore the inverse image under ` of (−∞, c) contains
w + rT , an open neighborhood of w. Hence H is open.
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A similar argument shows J = {w : `(w) > d} is open. Let w ∈ J , u ∈ T ,
and r = d− `(w). Since r is negative,

`(w − ru) = `(w) + r`(−u) ≥ `(w) + rpT (−u) > `(w) + r = d,

so w − ru ∈ J . As above, J is open.

Since the inverse images of (−∞, c) and (d,∞) are open and the collection
of such sets is a subbasis for the topology of the real line, ` is continuous.

Using the extended hyperplane separation theorem, we have

Corollary 6.3 Let K be a closed convex set in a LCT space, z /∈ K. There
exists a continuous linear functional ` such that `(y) ≤ c for y ∈ K and
`(z) > c.

6.3 Krein-Milman theorem

We will use the easy fact that if E is an extreme subset of a convex set K
and p is an extreme point for E, then p is an extreme point for K.

Theorem 6.4 (Krein-Milman) Let K be a nonempty, compact, convex sub-
set of a LCT linear space X. Then
(1) K has at least one extreme point.
(2) K is the closure of the convex hull of its extreme points.

Proof. (1) Let {Ej} be the collection of all nonempty closed extreme subsets
of K. It is nonempty because it contains K. We partially order by reverse
inclusion: E ≤ F if E ⊃ F . We show that if we have a totally ordered
subcollection, ∩jEj is an upper bound with respect to “≤,” and hence by
Zorn’s lemma a maximal element, which means that it contains no strictly
smaller extreme subset.

The intersection of any finite totally ordered subcollection {Ej} is just
the smallest one. Since K is compact, by the finite intersection property, the
intersection of any totally ordered subcollection is nonempty. (If ∩Ej = ∅,
then {Ec

j} forms an open cover of K, so there is a finite subcover, and
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then the intersection of those finitely many Ej is empty, a contradiction.)
The intersection of closed sets is closed, and it is easy to check that the
intersection of extreme sets is extreme.

By Zorn’s lemma, there is a maximal element E, an extreme subset that
contains no strictly smaller extreme subset. We claim E is a single point.
If not, there exists a continuous linear functional ` that separates 2 of the
points of E. Let µ be the maximum value of ` on E. Since E is compact,
this maximum value is attained. Let M = {x ∈ E : `(x) = µ}. M 6= E since
` is not constant. ` is continuous and E is closed, so M is closed. `−1({µ})
is the inverse image of an extreme set and we can check that it therefore is
itself extreme, so M is extreme in E, and since E is extreme in K, M is
extreme in K. But this contradicts the fact that E was a minimal extreme
subset.

(2) Let Ke be the extreme points of K. We’ll show that if z is not in
the closure of the convex hull, then z /∈ K. There exists a continuous linear
functional ` such that `(y) ≤ c for y ∈ Ke and `(z) > c. K is compact and
` is continuous, so ` achieves it maximum on a closed subset E of K. E is
extreme, and E must contain an extreme point p. Since p ∈ E ⊂ Ke, then
`(p) ≤ c. Since `(p) = maxK `(x), then `(x) ≤ `(p) ≤ c for all x ∈ K. Since
`(z) > c, then z /∈ K.

6.4 Choquet’s theorem

Here is a theorem of Choquet.

Theorem 6.5 Suppose K is a nonempty compact convex subset of a LCT
linear space X. Let Ke be the set of extreme points. If u ∈ K, there exists a
measure mu of total mass 1 on Ke such that

u =

∫
Ke

emu(de)

in the weak sense.

A measure with total mass one is a probability measure, but this theorem
has nothing to do with probability.
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The equation holding in the weak sense means

`(u) =

∫
Ke

`(e)mu(de)

for all continuous linear functionals `.

Proof. Let m,M be the minimum and maximum of ` on K. K is compact,
so these values are achieved. Then {x ∈ K : `(x) = m} is an extreme subset
of K and similarly with m replaced by M . They each contain extreme points.
So if u ∈ K,

min
p∈Ke

`(p) ≤ `(u) ≤ max
p∈Ke

`(p). (6.1)

If `1 and `2 are equal on Ke, then applying the above to `1 − `2 shows they
are equal on K.

Let L be the class of continuous functions on Ke that are the restriction
of a continuous linear functional. Fix u. Define r on L by setting

r(`) = `(u).

If L contains the constant function 1, then by (6.1) we have r(`) = `(u) = 1.
If L does not contain the constant functions, adjoin the constant function
f0 = 1 to L and set r(f0) = 1. The set L is a linear subspace of C(Ke).
Check that r is a positive linear functional on L.

Now use Hahn-Banach to extend r from L to C(Ke).

Ke is a closed subset of K, hence compact. r is a positive linear functional
on C(Ke). By the Riesz representation theorem from measure theory, there
exists a measure m such that

r(f) =

∫
Ke

f dm.

Since r(f0) = 1, then m(Ke) = 1.

An example: in R3, let K be the unit circle in the (x, y) plane together
with {(1, 0, z) : |z| ≤ 1}. Then (1, 0, 0) /∈ Ke, so the collection of extreme
points is not closed.

Choquet proved an important extension of his theorem in that we can take
the integral to be over Ke rather than its closure, provided K is metrizable.

We write b(µ) for
∫
e µ(de), the barycenter of µ.
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Theorem 6.6 (Choquet) If K is convex, compact, and metrizable, and x ∈
K, there exists a probability measure µ supported on the extreme points of K
such that x = b(µ).

A function f is concave if −f is convex. Let S be the set of continuous
concave functions on K. S is closed under the operation ∧ (the operation
of taking the greatest lower bound) and is closed under addition. It is an
exercise to show that S−S is closed under ∧ and ∨. S−S contains constants,
and since it contains linear functions, it separates points. By the Stone-
Weierstrass theorem, S − S is dense in C(K).

Let us write λ≺µ if
∫
f dλ ≥

∫
f dµ for all f ∈ S, where µ and λ are

probability measures on K. The idea of the existence of an extremal measure
is the following. If x is not extremal, it can be written as

∑
i aixi. Any xi that

is not an extreme point has a similar representation. The measure
∑

i aiδxi
is “closer” to the boundary than δx and we will see this means

∑
i aiδxi�δx.

The desired representation will come if we find the measure that is maximal
with respect to ≺.

Proposition 6.7 There exists µ such that δx≺µ and µ�λ whenever λ�δx.

Proof. We use Zorn’s lemma. Suppose I is a totally ordered set and µi is a
probability measure on K for each i ∈ I with µi≺µj if i < j. If f ∈ S, then∫
f dµi decreases as i increases. Let `(f) denote the limit. In this context,

this means that given ε > 0, there exists i0 ∈ I such that |`(f)−
∫
f dµi| < ε

if i > i0. Because
∫
f dµi decreases in i, it is easy to see that `(f) =

infi∈I
∫
f dµi. Define ` on S − S by `(f) = limi

∫
f dµi. Because all the

µi have total mass 1, ` is a bounded linear operator, and we can then extend
` to C(K), the continuous functions on K. By the Riesz representation
theorem, there exists a measure µ such that `(f) =

∫
f dµ for all f ∈ C(K).

If f ∈ S − S is nonnegative, `(f) = limi

∫
f dµi ≥ 0, or µ is a positive

measure. Since `(1) = 1, µ is a probability measure. Because
∫
f dµ =

`(f) = infi
∫
f dµi if f ∈ S, µ�µi for all i ∈ I. Thus µ is an upper bound

for the µi. By Zorn’s lemma, then, {λ : λ�δx} has a maximal element.

We must now show that µ has barycenter x and that µ is supported on
the extreme points of K.
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Proposition 6.8 If µ�δx, then b(µ) = x.

Proof. Suppose ` is any linear functional on K. Then ` ∈ S and ` ∈ −S.
Thus

∫
` dµ ≤

∫
` dδx and

∫
(−`) dµ ≤

∫
(−`) dδx, or

∫
` dµ =

∫
` dδx for all

` linear. That implies b(µ) = x.

If f ∈ C(K), the continuous functions on K, let

f̃ = inf{g ∈ S, g ≥ f}. (6.2)

f̃ is the least concave majorant of f . Note f ≤ f̃ and that f̃ is bounded,
since the constant function g ≡ supK f is continuous and dominates f .

The existence part is completed by the following.

Proposition 6.9 If µ is maximal with respect to �, then µ is supported on
the extreme points of K.

Proof. Suppose µ is maximal. We first show∫
f dµ =

∫
f̃ dµ (6.3)

for all f ∈ C(K). Let E = C(K) and define

P (f) =

∫
f̃ dµ. (6.4)

Since f̃ + g ≤ f̃ + g̃, P is clearly sublinear. Suppose
∫
f dµ 6=

∫
f̃ dµ for

some f ∈ C(K). Since S −S is dense in C(K), there exists f ∈ S such that∫
f dµ 6=

∫
f̃ dµ. Let F = {cf : c ∈ R} and let `(f) = P (f) =

∫
f̃ dµ.

0 ≤ P (f) + P (−f) by sublinearity, so `(−f) = −P (f) ≤ P (−f), or `
is dominated by P on F . Use the Hahn-Banach theorem to extend ` to E.
Since ` is a linear functional on C(K), there exists a measure ν such that
`g =

∫
g dν for all g ∈ C(K) by the Riesz representation theorem. We claim

ν is a probability. `(1) ≤ P (1) = 1, and −`(1) = `(−1) ≤ P (−1) = −1, or
`(1) = 1. If g ≥ 0, −`(g) = `(−g) ≤ P (−g) =

∫
(−̃g) dµ ≤ 0, or `(g) ≥ 0.

Thus ν is a positive measure with total mass 1, which proves the claim.
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If h ∈ S, then h̃ = h and
∫
h dν = `(h) ≤ P (h) =

∫
h̃ dµ =

∫
h dµ, or

ν�µ. Moreover,
∫
f dν = `(f) = P (f) =

∫
f̃ dµ >

∫
f dµ, or ν 6= µ. This

contradicts the maximality of µ. Therefore
∫
f dµ =

∫
f̃ dµ for all f ∈ C(K).

Since (6.3) holds and f ≤ f̃ , µ must be concentrated on Bf = {x ∈ K :

f(x) = f̃(x)} for all f ∈ −S. Since K is metrizable, C(K) has a countable
dense subset. Since S−S is dense in C(K), we can find a countable sequence
fn ∈ −S that separate points. We may normalize so that ‖fn‖∞ ≤ 1. Let
f =

∑
n(fn)2/2n. Then f is convex, continuous, and also strictly convex.

Since f̃ is concave, f̃(x) > f(x) for all x in K that are not extremal. So Bf

is contained in the set of extreme points of K, which proves the proposition.



Chapter 7

Sobolev spaces

7.1 Weak derivatives

Let C∞K be the set of C∞ functions on Rn that have compact support and
have partial derivatives of all orders. For j = (j1, . . . , jn), write

Djf =
∂j1+···+jnf

∂j1x1 · · · ∂jnxn
,

and set |j| = j1 + · · ·+ jn. We use the convention that ∂0f/∂x0i is the same
as f .

Let f, g be locally integrable. We say that Djf = g in the weak sense or
g is the weak jth order partial derivative of f if∫

f(x)Djϕ(x) dx = (−1)|j|
∫
g(x)ϕ(x) dx

for all ϕ ∈ C∞K . Note that if g = Djf in the usual sense, then integration by
parts shows that g is also the weak derivative of f .

Let

W k,p(Rn) = {f : f ∈ Lp, Djf ∈ Lp for each j such that |j| ≤ k}.

Set
‖f‖Wk,p =

∑
{j:0≤|j|≤k}

‖Djf‖p,

71
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where we set D0f = f .

This is slightly different than

‖f‖0 =
(∑
|j|≤k

∫
|Djf |p

)1/p
,

which is the definition we used for the W k,p norm earlier. However they are
equivalent norms. To see this, we use the inequality

(a+ b)p ≤ cpa
p + cpb

p, a, b ≥ 0,

where cp = 2p−1 when p ≥ 1 and cp = 1 when p < 1. An induction argument
leads to ( N∑

i=1

ai

)p
≤ c(p,N)

N∑
i=1

api

if each ai ≥ 0.

We have

‖f‖p
Wk,p =

(∑
|j|≤k

‖Djf‖p
)p
≤ c(p, k)

∑
j≤k

‖Djf‖pp = c(p, k)‖f‖p0

for one direction. For the other,

‖f‖0 ≤ c(1/p, k)
∑
|j|≤k

(∫
|Djf |p

)1/p
= ‖f‖Wk,p .

Theorem 7.1 The space W k,p is complete.

Proof. Let fm be a Cauchy sequence in W k,p. For each j such that |j| ≤ k,
we see that Djfm is a Cauchy sequence in Lp. Let gj be the Lp limit of Djfm.
Let f be the Lp limit of fm. Then∫

fmD
jϕ = (−1)|j|

∫
(Djfm)ϕ→ (−1)|j|

∫
gjϕ

for all ϕ ∈ C∞K . On the other hand,
∫
fmD

jϕ→
∫
f Djϕ. Therefore

(−1)|j|
∫
gjϕ =

∫
f Djϕ

for all ϕ ∈ C∞K . We conclude that gj = Djf a.e. for each j such that |j| ≤ k.
We have thus proved that Djfm converges to Djf in Lp for each j such that
|j| ≤ k, and that suffices to prove the theorem.
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7.2 Sobolev inequalities

Lemma 7.2 If k ≥ 1 and f1, . . . , fk ≥ 0, then∫
f
1/k
1 · · · f 1/k

k ≤
(∫

f1

)1/k
· · ·
(∫

fk

)1/k
.

Proof. We will prove(∫
f
1/k
1 · · · f 1/k

k

)k
≤
(∫

f1

)
· · ·
(∫

fk

)
. (7.1)

We will use induction. The case k = 1 is obvious. Suppose (7.1) holds when
k is replaced by k − 1 so that(∫

f
1/(k−1)
1 · · · f 1/(k−1)

k−1

)k−1
≤
(∫

f1

)
· · ·
(∫

fk−1

)
. (7.2)

Let p = k/(k−1) and q = k so that p−1 +q−1 = 1. Using Hölder’s inequality,∫
(f

1/k
1 · · ·f 1/k

k−1)f
1/k
k

≤
(∫

f
1/(k−1)
1 · · · f 1/(k−1)

k−1

)(k−1)/k(∫
fk

)1/k
.

Taking both sides to the kth power, we obtain(∫
(f

1/k
1 · · ·f 1/k

k−1)f
1/k
k

)k
≤
(∫

f
1/(k−1)
1 · · · f 1/(k−1)

k−1

)(k−1)(∫
fk

)
.

Using (7.2), we obtain (7.1). Therefore our result follows by induction.

Let C1
K be the continuously differentiable functions with compact sup-

port. The following theorem is sometimes known as the Gagliardo-Nirenberg
inequality.

Theorem 7.3 There exists a constant c1 depending only on n such that if
u ∈ C1

K, then
‖u‖n/(n−1) ≤ c1‖ |∇u| ‖1.
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We observe that u having compact support is essential; otherwise we could
just let u be identically equal to one and get a contradiction. On the other
hand, the constant c1 does not depend on the support of u.

Proof. For simplicity of notation, set s = 1/(n − 1). Let Kj1···jm be the
integral of |∇u(x1, . . . , xn)| with respect to the variables xj1 , . . . , xjm . Thus

K1 =

∫
|∇u(x1, . . . , xn)| dx1

and

K23 =

∫ ∫
|∇u(x1, . . . , xn)| dx2 dx3.

Note K1 is a function of (x2, . . . , xn) and K23 is a function of (x1, x4, . . . , xn).

If x = (x1, . . . , xn) ∈ Rn, then since u has compact support,

|u(x)| =
∣∣∣ ∫ x1

−∞

∂u

∂x1
(y1, x2, . . . , xn) dy1

∣∣∣
≤
∫
R
|∇u(y1, x2, . . . , xn)| dy1

= K1.

The same argument shows that |u(x)| ≤ Ki for each i, so that

|u(x)|n/(n−1) = |u(x)|ns ≤ Ks
1K

s
2 · · ·Ks

n.

Since K1 does not depend on x1, Lemma 7.2 shows that∫
|u(x)|ns dx1 ≤ Ks

1

∫
Ks

2 · · ·Ks
n dx1

≤ Ks
1

(∫
K2 dx1

)s
· · ·
(∫

Kn dx1

)s
.

Note that ∫
K2 dx1 =

∫ (∫
|∇u(x1, . . . , xn)| dx2

)
dx1 = K12,

and similarly for the other integrals. Hence∫
|u|ns dx1 ≤ Ks

1K
s
12 · · ·Ks

1n.
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Next, since K12 does not depend on x2,∫
|u(x)|ns dx1 dx2 ≤ Ks

12

∫
Ks

1K
s
13 · · ·Ks

1n dx2

≤ Ks
12

(∫
K1 dx2

)s(∫
K13 dx2

)s
· · ·
(∫

K1n dx2

)s
= Ks

12K
s
12K

s
123 · · ·Ks

12n.

We continue, and get∫
|u(x)|ns dx1 dx2 dx3 ≤ Ks

123K
s
123K

s
123K

s
1234 · · ·Ks

123n

and so on, until finally we arrive at∫
|u(x)|ns dx1 · · · dxn ≤

(
Ks

12···n

)n
= Kns

12···n.

If we then take the ns = n/(n− 1) roots of both sides, we get the inequality
we wanted.

From this we can get the Sobolev inequalities.

Theorem 7.4 Suppose 1 ≤ p < n and u ∈ C1
K. Then there exists a constant

c1 depending only on n such that

‖u‖np/(n−p) ≤ c1‖ |∇u| ‖p.

Proof. The case p = 1 is the case above, so we assume p > 1. The case
when u is identically equal to 0 is obvious, so we rule that case out. Let

r =
p(n− 1)

n− p
,

and note that r > 1 and

r − 1 =
np− n
n− p

.

Let w = |u|r. Since r > 1, then x → |x|r is continuously differentiable, and
by the chain rule, w ∈ C1. We observe that

|∇w| ≤ c2|u|r−1|∇u|.
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Applying Theorem 7.3 to w and using Hölder’s inequality with q = p
p−1 ,

we obtain(∫
|w|n/(n−1)

)n−1
n ≤ c3

∫
|∇w|

≤ c4

∫
|u|(np−n)/(n−p)|∇u|

≤ c5

(∫
|u|np/(n−p)

) p−1
p
(∫
|∇u|p

)1/p
.

The left hand side is equal to(∫
|u|np/(n−p)

)n−1
n
.

Divide both sides by (∫
|u|np/(n−p)

) p−1
p
.

Since
n− 1

n
− p− 1

p
=

1

p
− 1

n
=
n− p
pn

,

we get our result.

We can iterate to get results on the Lp norm of f in terms of the Lq norm
of Dkf when k > 1.

Theorem 7.5 Suppose k ≥ 1. Suppose p < n/k and we define q by 1
q

=
1
p
− k

n
. Then there exists c1 such that

‖f‖q ≤ c
∥∥∥ ∑
{j:|j|=k}

|Dkf |
∥∥∥
p
.

7.3 Morrey’s inequality

Morrey’s inequality shows that if f ∈ Lp for large enough p, then f is Hölder
continuous.

Let

‖f‖Cγ = ‖f‖L∞ + sup
x 6=y

|f(x)− f(y)|
|x− y|γ

.
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Theorem 7.6 Suppose p > n and u ∈ C1(Rn) with compact support. Let
γ = 1 − n

p
. Then there exists a constant c depending only on p and n such

that

‖u‖Cγ ≤ c‖u‖W 1,p .

Proof. We will prove the Hölder estimate first and then do the L∞ estimate.
Let’s take x = 0.

If v ∈ ∂B(0, 1) and 0 < s < r, then

|u(x+ sv)− u(x)| =
∣∣∣ ∫ s

0

d

dt
u(x+ tv) dt

∣∣∣ =
∣∣∣ ∫ s

0

〈∇u(x+ tv), v〉 dt
∣∣∣

≤
∫ s

0

|∇u(x+ tv)| dt.

Integrating over v ∈ ∂B(0, 1), if σ is surface measure,∫
∂B(0,1)

|u(x+ sv)− u(x)| dσ(v) ≤
∫ s

0

∫
∂B(0,1)

|∇u(x+ tv)| dσ(v) dt.

We change to rectangular coordinates, with x+ tv = y, so that t = |y−x|
and dσ(v) = t−n+1 dσ(y):∫

∂B(0,1)

|u(x+ sv)− u(x)| dσ(v) ≤
∫
B(0,s)

|∇u(y)|
|y − x|n−1

dσ(y).

If we change the integral on the right to being over B(0, r), this just makes
the integral larger.

Now multiply by sn−1 and integrate over s from 0 to r to get∫
B(0,r)

|u(y)− u(x)| dy ≤ rn

n

∫
B(0,r)

|∇u(y)|
|y − x|n−1

dy.

If x, y ∈ Rn, set r = |y − x| and let W = B(x, r) ∩B(y, r). We see that if
z ∈ W , then

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|,
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and then integrating over such z,

|u(x)− u(y)| ≤ 1

|W |

∫
W

|u(x)− u(z)| dz +
1

|W |

∫
W

|u(y)− u(z)| dz,

where |A| is the Lebesgue measure of A.

We estimate the first integral, the second being almost identical. Note
|B(x, r)|/|W | does not depend on r. By Hölder’s inequality,

1

|W |

∫
W

|u(x)−u(z)| dz

≤ c
(∫

B(x,r)

|∇u(z)|p dz
)1/p(∫

B(x,r)

1

|x− z|
p(n−1)
p−1

) p−1
p

≤ c
(
rn−

p(n−1)
p−1

) p−1
p ‖∇u‖p

≤ cr1−
n
p ‖∇u‖p

= c1|x− y|1−
n
p ‖∇u‖p.

This argument works no matter what x is.

Now we turn to the L∞ estimate. Suppose ‖u‖W 1,p = 1. If there exists x
such that |u(x)| ≥M (where M will be chosen in a moment), then from

|u(x)− u(y)| ≤ c1|x− y|1−
n
p ‖∇u‖p ≤ c1|x− y|1−

n
p ,

we see that |u(y)| ≥M/2 in B(x, 1) as long as M ≥ 2c1. But

1 = ‖u‖W 1,p ≥ ‖u‖p ≥
(∫

B(x,1)

|u(y)|p dy
)1/p
≥ c2M.

Take M = max(2c1, 2/c2). We then get a contradiction to the assumption
that there exists x with |u(x)| ≥M .

If r ≥ 0 is an integer and α ∈ (0, 1), define

‖f‖Cr,α =
∑
|j|≤r

sup
x
|Djf(x)|+

∑
|j|=r

sup
x 6=y

|Djf(x)−Djf(y)|
|x− y|α

,

and let Cr,α be the set of functions whose norm is finite.

Also part of the Sobolev embedding theorem is the following.
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Theorem 7.7 If
k − r − α

n
=

1

p
,

then W k,p(Rn) ⊂ Cr,α and for f ∈ Ck+α with compact support,

‖f‖Cr,α ≤ c‖f‖Wk,p .

This follows easily from the Morrey inequality.
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Chapter 8

Distributions

For simplicity of notation, in this chapter we restrict ourselves to dimension
one, but everything we do can be extended to Rn, n > 1, although in some
cases a more complicated proof is necessary.

8.1 Definitions and examples

We use C∞K for the set of C∞ functions on R with compact support. Let
Df = f ′, the derivative of f , D2f = f ′′, the second derivative, and so on,
and we make the convention that D0f = f .

If f is a continuous function on R, let supp (f) be the support of f , the
closure of the set {x : f(x) 6= 0}. If fj, f ∈ C∞K , we say fj → f in the C∞K
sense if there exists a compact subset K such that supp (fj) ⊂ K for all j, fj
converges uniformly to f , and Dmfj converges uniformly to Dmf for all m.

We have not claimed that C∞K with this notion of convergence is a Banach
space, so it doesn’t make sense to talk about bounded linear functionals.
But it does make sense to consider continuous linear functionals. A map F :
C∞K → C is a continuous linear functional on C∞K if F (f + g) = F (f) +F (g)
whenever f, g ∈ C∞K , F (cf) = cF (f) whenever f ∈ C∞K and c ∈ C, and
F (fj)→ F (f) whenever fj → f in the C∞K sense.

A distribution is defined to be a complex-valued continuous linear func-
tional on C∞K .

81
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Here are some examples of distributions.

Example 8.1 If g is a continuous function, define

Gg(f) =

∫
R
f(x)g(x) dx, f ∈ C∞K . (8.1)

It is routine to check that Gg is a distribution.

Note that knowing the values of Gg(f) for all f ∈ C∞K determines g
uniquely up to almost everywhere equivalence. Since g is continuous, g is
uniquely determined at every point by the values of Gg(f).

Example 8.2 Set δ(f) = f(0) for f ∈ C∞K . This distribution is the Dirac
delta function.

Example 8.3 If g is integrable and k ≥ 1, define

F (f) =

∫
R
Dkf(x)g(x) dx, f ∈ C∞K .

Example 8.4 If k ≥ 1, define F (f) = Dkf(0) for f ∈ C∞K .

There are a number of operations that one can perform on distributions
to get other distributions. Here are some examples.

Example 8.5 Let h be a C∞ function, not necessarily with compact sup-
port. If F is a distribution, define Mh(F ) by

Mh(F )(f) = F (fh), f ∈ C∞K .

It is routine to check that Mh(F ) is a distribution.

Example 8.1 shows how to consider a continuous function g as a distribu-
tion. Defining Gg by (8.1),

Mh(Gg)(f) = Gg(fh) =

∫
(fh)g =

∫
f(hg) = Ghg(f).

Therefore we can consider the operator Mh we just defined as an extension
of the operation of multiplying continuous functions by a C∞ function h.
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Example 8.6 If F is a distribution, define D(F ) by

D(F )(f) = F (−Df), f ∈ C∞K .

Again it is routine to check that D(F ) is a distribution.

If g is a continuously differentiable function and we use (8.1) to identify
the function g with the distribution Gg, then

D(Gg)(f) = Gg(−Df) =

∫
(−Df)(x)g(x) dx

=

∫
f(x)(Dg)(x) dx = GDg(f), f ∈ C∞K ,

by integration by parts. Therefore D(Gg) is the distribution that corresponds
to the function that is the derivative of g. However, D(F ) is defined for any
distribution F . Hence the operator D on distributions gives an interpretation
to the idea of taking the derivative of any continuous function.

Example 8.7 Let a ∈ R and define Ta(F ) by

Ta(F )(f) = F (f−a), f ∈ C∞K ,

where f−a(x) = f(x+ a). If Gg is given by (8.1), then

Ta(Gg)(f) = Gg(f−a) =

∫
f−a(x)g(x) dx

=

∫
f(x)g(x− a) dx = Gga(f), f ∈ C∞K ,

by a change of variables, and we can consider Ta as the operator that trans-
lates a distribution by a.

Example 8.8 Define R by

R(F )(f) = F (Rf), f ∈ C∞K ,

where Rf(x) = f(−x). Similarly to the previous examples, we can see that
R reflects a distribution through the origin.
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Example 8.9 Finally, we give a definition of the convolution of a distri-
bution with a continuous function h with compact support. Define Ch(F )
by

Ch(F )(f) = F (f ∗Rh), f ∈ C∞K ,
where Rh(x) = h(−x). To justify that this extends the notion of convolution,
note that

Ch(Gg)(f) = Gg(f ∗Rh) =

∫
g(x)(f ∗Rh)(x) dx

=

∫ ∫
g(x)f(y)h(y − x) dy dx =

∫
f(y)(g ∗ h)(y) dy

= Gg∗h(f),

or Ch takes the distribution corresponding to the continuous function g to
the distribution corresponding to the function g ∗ h.

One cannot, in general, define the product of two distributions or quanti-
ties like δ(x2).

8.2 Distributions supported at a point

We first define the support of a distribution. We then show that a distribu-
tion supported at a point is a linear combination of derivatives of the delta
function.

Let G be open. A distribution F is zero on G if F (f) = 0 for all C∞K
functions f for which supp (f) ⊂ G.

Lemma 8.10 If F is zero on G1 and G2, then F is zero on G1 ∪G2.

Proof. This is just the usual partition of unity proof. Suppose f has support
in G1∪G2. We will write f = f1+f2 with supp (f1) ⊂ G1 and supp (f2) ⊂ G2.
Then F (f) = F (f1) + F (f2) = 0, which will achieve the proof.

Fix x ∈ supp (f). Since G1, G2 are open, we can find hx such that hx is
non-negative, hx(x) > 0, hx is in C∞K , and the support of hx is contained
either in G1 or in G2. The set Bx = {y : hx(y) > 0} is open and contains x.
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By compactness we can cover supp f by finitely many sets {Bx1 , . . . , Bxm}.
Let h1 be the sum of those hxi whose support is contained in G1 and let h2
be the sum of those hxi whose support is contained in G2. Then let

f1 =
h1

h1 + h2
f, f2 =

h2
h1 + h2

f.

Clearly supp (f1) ⊂ G1, supp (f2) ⊂ G2, f1 + f2 > 0 on G1 ∪ G2, and
f = f1 + f2.

If we have an arbitrary collection of open sets {Gα}, F is zero on each Gα,
and supp (f) is contained in ∪αGα, then by compactness there exist finitely
many of the Gα that cover supp (f). By Lemma 8.10, F (f) = 0.

The union of all open sets on which F is zero is an open set on which F
is zero. The complement of this open set is called the support of F .

Example 8.11 The support of the Dirac delta function is {0}. Note that
the support of Dkδ is also {0}.

Define

‖f‖CN (K) = max
0≤k≤N

sup
x∈K
|Dkf(x)|.

Proposition 8.12 Let F be a distribution and K a fixed compact set. There
exist N and c depending on F and K such that if f ∈ C∞K has support in K,
then

|F (f)| ≤ c‖f‖CN (K).

Proof. Suppose not. Then for each m there exists fm ∈ C∞K with support
contained in K such that F (fm) = 1 and ‖f‖Cm(K) ≤ 1/m. Therefore fm → 0
in the sense of C∞K . However F (fm) = 1 while F (0) = 0, a contradiction.

Proposition 8.13 Suppose F is a distribution and supp (F ) = {0}. There
exists N such that if f ∈ C∞K and Djf(0) = 0 for j ≤ N , then F (f) = 0.
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Proof. Let ϕ ∈ C∞ be 0 on [−1, 1] and 1 on |x| > 2. Let g = (1 − ϕ)f .
Note ϕf = 0 on [−1, 1], so F (ϕf) = 0 because F is supported on {0}. Then

F (g) = F (f)− F (ϕf) = F (f).

Thus is suffices to show that F (g) = 0 whenever g ∈ C∞K , supp (g) ⊂ [−3, 3],
and Djg(0) = 0 for 0 ≤ j ≤ N .

Let K = [−3, 3]. By Proposition 8.12 there exist N and c depending only
on F such that |F (g)| ≤ c‖g‖CN (K). Define gm(x) = ϕ(mx)g(x). Note that
gm(x) = g(x) if |x| > 2/m.

Suppose |x| < 2/m and g ∈ C∞K with support in [−3, 3] and Djg(0) = 0
for j ≤ N . By Taylor’s theorem, if j ≤ N ,

Djg(x) = Djg(0) +Dj+1g(0)x+ · · ·+DNg(0)
xN−j

(N − j)!
+R

= R,

where the remainder R satisfies

|R| ≤ sup
y∈R
|DN+1g(y)| |x|

N+1−j

(N + 1− j)!
.

Since |x| < 2/m, then

|Djg(x)| = |R| ≤ c1m
j−1−N (8.2)

for some constant c1.

By the definition of gm and (8.2),

|gm(x)| ≤ c2|g(x)| ≤ c3m
−N−1,

where c2 and c3 are constants. Again using (8.2),

|Dgm(x)| ≤ |ϕ(mx)| |Dg(x)|+m|g(x)| |Dϕ(mx)| ≤ c4m
−N .

Continuing, repeated applications of the product rule show that if k ≤ N ,
then

|Dkgm(x)| ≤ c5m
k−1−N

for k ≤ N and |x| ≤ 2/m, where c5 is a constant.
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Recalling that gm(x) = g(x) if |x| > 2/m, we see that Djgm(x)→ Djg(x)
uniformly over x ∈ [−3, 3] if j ≤ N . We conclude

F (gm − g) = F (gm)− F (g)→ 0.

However, each gm is 0 in a neighborhood of 0, so by the hypothesis, F (gm) =
0; thus F (g) = 0.

By Example 8.6, Djδ is the distribution such that Djδ(f) = (−1)jDjf(0).

Theorem 8.14 Suppose F is a distribution supported on {0}. Then there
exist N and constants ci such that

F =
N∑
i=0

ciD
iδ.

Proof. Let Pi(x) be a C∞K function which agrees with the polynomial xi in
a neighborhood of 0. Taking derivatives shows that DjPi(0) = 0 if i 6= j and
equals i! if i = j. Then Djδ(Pi) = (−1)ii! if i = j and 0 otherwise.

Use Proposition 8.13 to determine the integer N . Suppose f ∈ C∞K . By
Taylor’s theorem, f and the function

g(x) =
N∑
i=0

Dif(0)Pi(x)/i!

agree at 0 and all the derivatives up to order N agree at 0. By the conclusion
of Proposition 8.13 applied to f − g,

F
(
f −

N∑
i=0

Dif(0)

i!
Pi

)
= 0.

Therefore

F (f) =
N∑
i=0

Dif(0)

i!
F (Pi) =

N∑
i=0

(−1)i
Diδ(f)

i!
F (Pi)

=
N∑
i=0

ciD
iδ(f)

if we set ci = (−1)iF (Pi)/i! Since f was arbitrary and the ci do not depend
on f , this proves the theorem.
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8.3 Distributions with compact

support

In this section we consider distributions whose supports are compact sets.

Theorem 8.15 If F has compact support, there exist a non-negative integer
L and continuous functions gj such that

F =
∑
j≤L

DjGgj , (8.3)

where Ggj is defined by Example 8.1.

Example 8.16 The delta function is the derivative of h, where h is 0 for
x < 0 and 1 for x ≥ 0. In turn h is the derivative of g, where g is 0 for x < 0
and g(x) = x for x ≥ 0. Therefore δ = D2Gg.

Proof. Let h ∈ C∞K and suppose h is equal to 1 on the support of F . Then
F ((1−h)f) = 0, or F (f) = F (hf). Therefore there exist N and c1 such that

|F (hf)| ≤ c1‖hf‖CN (K).

By the product rule,

|D(hf)| ≤ |h(Df)|+ |(Dh)f | ≤ c2‖f‖CN (K),

and by repeated applications of the product rule,

‖hf‖CN (K) ≤ c3‖f‖CN (K).

Hence
|F (f)| = |F (hf)| ≤ c4‖f‖CN (K).

Let K = [−x0, x0] be a closed interval containing the support of F . Let
CN(K) be the N times continuously differentiable functions whose support
is contained in K. We will use the fact that CN(K) is a complete metric
space with respect to the metric ‖f − g‖CN (K).
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Define

‖f‖HM =
(∑
k≤M

∫
|Dkf |2 dx

)1/2
, f ∈ C∞K ,

and let HM be the completion of {f ∈ C∞K : supp (f) ⊂ K} with respect to
this norm. It is routine to check that HM is a Hilbert space.

Suppose M = N+1 and x ∈ K. Then using the Cauchy-Schwarz inequal-
ity and the fact that K = [−x0, x0],

|Djf(x)| = |Djf(x)−Djf(−x0)| =
∣∣∣ ∫ x

−x0
Dj+1f(y) dy

∣∣∣
≤ |2x0|1/2

(∫
R
|Dj+1f(y)|2 dy

)1/2
≤ c5

(∫
R
|Dj+1f(y)|2 dy

)1/2
.

This holds for all j ≤ N , hence

‖u‖CN (K) ≤ c6‖u‖HM . (8.4)

Recall the definition of completion. If g ∈ HM , there exists gm ∈ CN(K)
such that ‖gm − g‖HM → 0. In view of (8.4), we see that {gm} is a Cauchy
sequence with respect to the norm ‖ ·‖CN (K). Since CN(K) is complete, then
gm converges with respect to this norm. The only possible limit is equal to
g a.e. We may therefore conclude g ∈ CN(K) whenever g ∈ HM .

Since |F (f)| ≤ c4‖f‖CN (K) ≤ c4c6‖f‖HM , then F can be viewed as a
bounded linear functional on HM . By the Riesz representation theorem for
Hilbert spaces (Theorem 4.12), there exists g ∈ HM such that

F (f) = 〈f, g〉HM =
∑
k≤M

〈Dkf,Dkg〉, f ∈ HM .

Now if gm → g with respect to the HM norm and each gm ∈ CN(K), then

〈Dkf,Dkg〉 = lim
m→∞

〈Dkf,Dkgm〉 = lim
m→∞

(−1)k〈D2kf, gm〉

= (−1)k〈D2kf, g〉 = (−1)kGg(D
2kf)

= (−1)kD2kGg(f)
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if f ∈ C∞K , using integration by parts and the definition of the derivative of
a distribution. Therefore

F =
∑
k≤M

(−1)kD2kGgk ,

which gives our result if we let L = 2M , set gj = 0 if j is odd, and set
g2k = (−1)kg.

8.4 Tempered distributions

Let S be the class of complex-valued C∞ functions u such that |xjDku(x)| →
0 as |x| → ∞ for all k ≥ 0 and all j ≥ 1. S is called the Schwartz class. An
example of an element in the Schwartz class that is not in C∞K is e−x

2
.

Define
‖u‖j,k = sup

x∈R
|x|j|Dku(x)|.

We say un ∈ S converges to u ∈ S in the sense of the Schwartz class if
‖un − u‖j,k → 0 for all j, k.

A continuous linear functional on S is a function F : S → C such that
F (f + g) = F (f) + F (g) if f, g ∈ S, F (cf) = cF (f) if f ∈ S and c ∈ C,
and F (fm) → F (f) whenever fm → f in the sense of the Schwartz class. A
tempered distribution is a continuous linear functional on S.

Since C∞K ⊂ S and fn → f in the sense of the Schwartz class whenever
fn → f in the sense of C∞K , then any continuous linear functional on S is also
a continuous linear functional on C∞K . Therefore every tempered distribution
is a distribution.

Any distribution with compact support is a tempered distribution. If g
grows slower than some power of |x| as |x| → ∞, then Gg is a tempered
distribution, where Gg(f) =

∫
f(x)g(x) dx.

For f ∈ S, recall that we defined the Fourier transform Ff = f̂ by

f̂(u) =

∫
f(x)eixu dx.
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Theorem 8.17 F is a continuous map from S into S.

Proof. For elements of S, Dk(Ff) = F((ix)k)f). If f ∈ S, |xkf(x)| tends
to zero faster than any power of |x|−1, so xkf(x) ∈ L1. This implies DkFf
is a continuous function, and hence Ff ∈ C∞.

By an exercise,

ujDk(Ff)(u) = ik+jF(Dj(xkf))(u). (8.5)

Using the product rule, Dj(xkf) is in L1. Hence ujDkFf(u) is continuous
and bounded. This implies that every derivative of Ff(u) goes to zero faster
than any power of |u|−1. Therefore Ff ∈ S.

Finally, if fm → f in the sense of the Schwartz class, it follows by the
dominated convergence theorem that F(fm)(u) → F(f)(u) uniformly over
u ∈ R and moreover |u|kDj(F(fm)) → |u|kDj(F(f)) uniformly over R for
each j and k.

If F is a tempered distribution, define FF by

FF (f) = F (f̂)

for all f ∈ S. We verify that FGg = Gĝ if g ∈ S as follows:

F(Gg)(f) = Gg(f̂) =

∫
f̂(x)g(x) dx

=

∫ ∫
eiyxf(y)g(x) dy dx =

∫
f(y)ĝ(y) dy

= Gĝ(f)

if f ∈ S.

Note that for the above equations to work, we used the fact that F maps
S into S. Of course, F does not map C∞K into C∞K . That is why we de-
fine the Fourier transform only for tempered distributions rather than all
distributions.

Theorem 8.18 F is an invertible map on the class of tempered distributions
and F−1 = (2π)1/2FR. Moreover F and R commute.
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Proof. We know

f(x) = (2π)−1/2
∫
f̂(−u)eixu du, f ∈ S,

so f = (2π)−1/2FRFf , and hence FRF = (2π)1/2I, where I is the identity.
Then if H is a tempered distribution,

(2π)−1/2FRFH(f) = RFH((2π)−1/2Ff) = FH((2π)−1/2RFf)

= H((2π)−1/2FRFf) = H(f).

Thus
(2π)−1/2FRFH = H,

or
(2π)−1/2FRF = I.

We conclude A = (2π)−1/2FR is a left inverse of F and B = (2π)−1/2RF is
a right inverse of F . Hence B = (AF)B = A(FB) = A, or F has an inverse,
namely, (2π)−1/2FR, and moreover RF = FR.



Chapter 9

Banach algebras

9.1 Normed algebras

An algebra is a linear space over + and a ring over ·. We assume there is
an identity for the multiplication, which we call I. Our algebras will be over
the scalar field C; the reasons will be very apparent shortly.

An algebra is a normed algebra if the linear space is normed and ‖NM‖ ≤
‖N‖ ‖M‖ and ‖I‖ = 1. If the normed algebra is complete, it is called a
Banach algebra.

One example is to let L = L(X,X), the set of linear maps from X into
X. Another is to let L be the collection of bounded continuous functions on
some set. A third example is to let L be the collection of bounded functions
that are analytic in the unit disk.

An element M of L is invertible if there exists N ∈ L such that NM =
MN = I.

M has a left inverse A if AM = I and a right inverse B if MB = I. If it
has both, then B = AMB = A, and so M is invertible.

Proposition 9.1 (1) If M and K are invertible, then

(MK)−1 = K−1M−1.

(2) If M and K commute and MK is invertible, then M and K are

93
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invertible.

Proof. (1) is easy. For (2), let N = (MK)−1. Then MKN = I, so KN is a
right inverse for M . Also, I = NMK = NKM , so NK is a left inverse for
M . Since M has a left and right inverse, it is invertible. The argument for
K is similar.

Proposition 9.2 If K is invertible, then so is L = K − A provided ‖A‖ <
1/‖K−1‖.

Proof. First we suppose K = I. If ‖B‖ < 1, then∥∥∥ n∑
m

Bi
∥∥∥ ≤ n∑

m

‖Bi‖ ≤
n∑
m

‖B‖i

is a Cauchy sequence, so S =
∑∞

i=0B
i converges.We see BS =

∑∞
i=1B

i =
S − I, so (I −B)S = I. Similarly S(I −B) = I.

For the general case, write K − A = K(I −K−1A), and let B = K−1A.
Then ‖B‖ ≤ ‖K−1‖ ‖A‖ < 1, and

(K − A)−1 = (I −K−1A)−1K−1.

We note for future reference the equation

(I −B)−1 =
∞∑
i=0

Bi. (9.1)

The resolvent set of M , ρ(M), is the set of λ ∈ C such that λI −M is
invertible. The spectrum of M , σ(M), is the set of λ for which λI −M is
not invertible. We frequently write λ−M for λI −M . We will also use Rλ

for (λI −M)−1.

Let F : G → X, where G ⊂ C, and write Fz for F (z). Fz is strongly
analytic if

lim
h→0

Fz+h − Fz
h
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exists in the norm topology for all z ∈ G, that is, there exists an element F ′z
such that the norm of (Fz+h − Fz)/h− F ′z tends to 0 as h→ 0.

One can check that much of complex analysis can be extended to strongly
analytic functions. There are two approaches one could follow to show this.
One is to recall that much of complex analysis is derived from Cauchy’s
theorem, and that in turn is based on the fact that

∫
C
cz dz = 0 and

∫
C
c dz =

0 when C is the boundary of a rectangle. If we replace c by M ∈ L, the same
argument goes through.

The other argument is that if ` is a bounded linear functional on L, then
f(z) = `(Fz) is analytic in the usual sense, and by Riemann sum approxima-
tions one can show that

`
(∫

C

Fz dz
)

=

∫
C

`(Fz) dz = 0

for suitable closed curves C. This is true for every `, and so
∫
C
Fz dz = 0.

Many of the other theorems of complex analysis can be proved in a similar
way.

Proposition 9.3 (1) ρ(M) is open in C.

(2) (z −M)−1 is an analytic function of z in ρ(M).

Proof. If λ ∈ ρ(M), letting K = λI−M and A = −hI, K−A = (λ+h)−M
is invertible if |h| = ‖A‖ < 1/‖K−1‖, which happens if h is small. So
λ+ h ∈ ρ(M).

For (2),

λ−M + hI = (λ−M)(I + hRλ),

and so

(λ−M + hI)−1 =
( ∞∑
i=0

(−1)i(λ−M)ihi
)

(λ−M)−1.

Therefore

((λ+ h)−M)−1 =
∞∑
n=0

(−1)n(λ−M)n−1hn =
( ∞∑
i=0

(−hRλ)
i
)
Rλ
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for h small. So the resolvent can be expanded in a power series in h which
is valid if |h| < ‖(λ−M)−1‖−1. We then have∥∥∥Rλ+h −Rλ

h
− (−R2

λ)
∥∥∥→ 0

as h→ 0.

We write
r(M) = sup

λ∈σ(M)

|λ|,

and call this the spectral radius of M .

Theorem 9.4 σ(M) is closed, bounded, and nonempty.

Proof. ρ(M) is open, so σ(M) is closed.

(zI −M)−1 = z−1(I −Mz−1)−1 =
∞∑
n=0

Mnz−n−1

converges if ‖z−1M‖ < 1, or equivalently, |z| > ‖M‖. Therefore, if |z| >
‖M‖, then z ∈ ρ(M). Hence the spectrum is contained in B‖M‖(0).

Suppose σ(M) is empty. For z > ‖M‖ we have

Rz = (z −M)−1 = z−1(I − z−1M)−1.

Let ` be any bounded linear functional on L. We conclude that f(z) = `(Rz)
is analytic and f(z) = `(Rz)→ 0 as |z| → ∞.

We thus know that f is analytic on C, i.e., it is an entire function, and
that f(z) tends to 0 as |z| → ∞. Therefore f is a bounded entire function.
By Liouville’s theorem from complex analysis, f must be constant. Since f
tends to 0 as |z| tends to infinity, that constant must be 0. This holds for all
`, so Rz must be equal to 0 for all z. But then we have I = (z −M)Rz = 0,
a contradiction.

A key result is the spectral radius formula. First we need a consequence
of the uniform boundedness principle.
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Lemma 9.5 If B is a Banach space and {xn} a subset of B such that
supn |f(xn)| is finite for each bounded linear functional f , then supn ‖xn‖
is finite.

Proof. For each x ∈ B, define a linear functional Lx on B∗, the dual space
of B, by

Lx(f) = f(x), f ∈ B∗.
We already have shown that ‖Lx‖ = ‖f‖.

Since supn |Lxn(f)| = supn |f(xn)| is finite for each f ∈ B∗, by the uniform
boundedness principle,

sup
n
‖Lxn‖ <∞.

Since ‖Lxn‖ = ‖xn‖, we obtain our result.

Theorem 9.6 (Spectral radius formula)

r(M) = lim
k→∞
‖Mk‖1/k.

Proof. Fix k for the moment. If we write n = kq + r,∥∥∥ ∞∑
n=0

Mn

zn+1

∥∥∥ ≤∑ ‖Mn‖
|z|n+1

≤
k−1∑
n=0

‖M‖r

|z|r+1

∑
q

(‖Mk‖
|z|k

)q
.

So
∑
Mn|z|−n−1 converges absolutely if ‖Mk‖/|z|k < 1, or if |z| > ‖Mk‖1/k.

If |z| > ‖Mk‖1/k, then z ∈ ρ(M). Hence if λ ∈ σ(M), then |λ| ≤ ‖Mk‖1/k.
This is true for all k, so r(M) ≤ lim infk→∞ ‖Mk‖1/k.

For the other direction, if z ∈ C with |z| < 1/r(M), then |1/z| > r(M),
and thus 1/z /∈ σ(M) by the definition of r(M). Hence I−zM = z(z−1I−M)
if invertible if z 6= 0. Clearly I − zM is invertible when z = 0 as well.

Suppose ` a linear functional on L. The function F (z) = `((I − zM)−1)
is analytic in B(0, 1/r(M)) ⊂ C. We know from complex analysis that a
function has a Taylor series that converges absolutely in any disk on which
the function is analytic. Therefore F has a Taylor series which converges
absolutely at each point of B(0, 1/r(M)).
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Let us identify the coefficients of the Taylor series. If |z| < 1/‖M‖, then
we see that

F (z) = `
( ∞∑
n=0

znMn
)

=
∞∑
n=0

`(Mn)zn. (9.2)

Therefore F (n)(0) = n!`(Mn), where F (n) is the nth derivative of F . We
conclude that the Taylor series for F in B(0, 1/r(M)) is

F (z) =
∞∑
n=0

`(Mn)zn. (9.3)

The difference between (9.2) and (9.3) is that the former is valid in the ball
B(0, 1/‖M‖) while the latter is valid in B(0, 1/r(M)).

We conclude from this that

∞∑
n=0

`(znMn)

converges absolutely for z in the ball B(0, 1/r(M)), and consequently

lim
n→∞

|`(znMn)| = 0

if |z| < 1/r(M). By Lemma 9.5 there exists a real number K such that

sup
n
‖znMn‖ ≤ K

for all n ≥ 1 and all z ∈ B(0, 1/r(M)). This implies that

|z| ‖Mn‖1/n ≤ K1/n,

and hence
|z| lim sup

n→∞
‖Mn‖1/n ≤ 1

if |z| < 1/r(M). Thus

lim sup
n→∞

‖Mn‖1/n ≤ r(M),

which completes the proof.



9.2. FUNCTIONAL CALCULUS 99

We say λ is an eigenvalue for M with associated eigenvector x 6= 0 if
Mx = λx. Note that not every element of σ(M) is an eigenvalue of M . For
example, if M : `2 → `2 is defined by

M(x1, x2, . . .) = (x1, x2/2, x3/4, . . .),

then 1, 1/2, 1/4, . . . are eigenvalues. Since the spectrum is closed, then 0 ∈
σ(M), but 0 is not an eigenvalue for M .

9.2 Functional calculus

We can define p(M) =
∑n

i=1 aiM
i for any polynomial p. Suppose f(z) =∑∞

j=0 ajz
j is an analytic function with radius of convergence R. If r(M) < R,

then there exists r(M) < S < R, and for j sufficiently large, ‖M j‖ ≤ Sj.
Since ∥∥∥ n∑

j=m+1

ajM
j
∥∥∥ ≤ n∑

j=m+1

|aj| ‖M j‖ ≤
n∑

j=m+1

|aj|Sj

for m and n large enough and
∑
|aj|Sj converges (since S is less than the

radius of convergence for f), then we can define f(M) for for any analytic
function whose power series’ radius of convergence is larger than the spectral
radius of M as the limit of the polynomials

∑n
j=0 ajM

j.

Let G be a domain containing σ(M), f analytic in G, C a closed curve in
G∩ρ(M) whose winding number is 1 about each point in σ(M) and 0 about
each point of Gc. Define

f(M) =
1

2πi

∫
C

(z −M)−1f(z) dz.

By Cauchy’s theorem, this is independent of the contour chosen.

Theorem 9.7 (1) If f is a polynomial, the two definitions agree.

(2) Suppose f and g are analytic functions defined on a ball containing
B(0, r(M)). Then f(M)g(M) = (fg)(M).
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Proof. (1) Take a c larger than r(M) and let C = {|z| = c}. Expanding
(z −M)−1 in a power series, which is valid if |z| = c, we have

1

2πi

∫
C

(z −M)−1zn dz =
1

2πi

∞∑
j=0

M j

∫
C

zn−j−1 dz = Mn.

(2) The radius of convergence of fg is at least as large as the smaller of the
radii of convergence of f and g, and hence is larger than r(M). (2) follows
easily by approximating f and g by polynomials.

Here is the spectral mapping theorem for polynomials.

Theorem 9.8 Suppose A is a bounded linear operator and P is a polynomial.
Then σ(P (A)) = P (σ(A)).

By P (σ(A)) we mean the set {P (λ) : λ ∈ σ(A)}.

Proof. We first suppose λ ∈ σ(P (A)) and prove that λ ∈ P (σ(A)). Factor

λ− P (x) = c(x− a1) · · · (x− an).

Since λ ∈ σ(P (A)), then λ−P (A) is not invertible, and therefore for at least
one i we must have that A−ai is not invertible. That means that ai ∈ σ(A).
Since ai is a root of the equation λ−P (x) = 0, then λ = P (ai), which means
that λ ∈ P (σ(A)).

Now suppose λ ∈ P (σ(A)). Then λ = P (a) for some a ∈ σ(A). We can
write

P (x) =
n∑
i=0

bix
i

for some coefficients bi, and then

P (x)− P (a) =
n∑
i=1

bi(x
i − ai) = (x− a)Q(x)

for some polynomial Q, since x − a divides xi − ai for each i ≥ 1. We then
have

P (A)− λ = P (A)− P (a) = (A− a)Q(A).
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If P (A) − λ were invertible, then by an earlier lemma we would have that
A−a is invertible, a contradiction. Therefore P (A)−λ is not invertible, i.e.,
λ ∈ σ(P (A)).

9.3 Commutative Banach algebras

We look at commutative Banach algebras with a unit. Commutative means
MN = NM for all M,N ∈ L.

p is a multiplicative functional on L if p is a homomorphism from L into
C.

Proposition 9.9 Every homomorphism is a contraction.

Proof. M = IM , so p(M) = p(IM) = p(I)p(M), or p(I) = 1. If K is
invertible,

p(K)p(K−1) = p(KK−1) = p(I) = 1,

so p(K) 6= 0. Suppose |p(M)| > ‖M‖ for some M . Then if B = M/p(M),
we have ‖B‖ < 1, so K = I −B is invertible. But

p(K) = p(I)− p(M/p(M)) = 1− 1 = 0,

a contradiction.

Our goal in this section is to show that if p(K) 6= 0 for all homomorphisms,
then K is invertible.

I ⊂ L is an ideal if I is a linear subspace, I 6= {0}, and if M ∈ L and
J ∈ I, then MJ ∈ I. I is a proper ideal if I 6= L.

As an example, let L = C(S), let r ∈ S, and let I = {f : f(r) = 0}.
If I ∈ I, then I = L. If I contains an invertible element, then I contains

the identity, and hence equals L.

Lemma 9.10 Let q be a homomorphism from L onto A, but where q is not
an isomorphism and q(L) 6= 0. Then
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(1) {K ∈ L : q(K) = 0} is a proper ideal. (This set is called the kernel of
q.)

(2) If I is a proper ideal, then I is the kernel of some non-trivial homo-
morphism.

Proof. (1) is easy. For (2), let A = L/I. Let q map M into the equivalence
class containing M . Then the kernel of q is I.

Proposition 9.11 If K ∈ L, K 6= 0, and K not invertible, then K lies in
some proper ideal.

Proof. Look at KL = {KM : M ∈ L}. Note KL does not contain the
identity.

Lemma 9.12 Every proper ideal is contained in a maximal proper ideal.

Proof. Let J be a proper ideal. Order the set of proper ideals that contain
J by inclusion. The union of a totally ordered subcollection will be an
upper bound. (Note that if I /∈ Iα for all α, then I /∈ ∪αIα.) Then use
Zorn’s lemma to find a maximal element of this collection. This element will
be in the collection, and hence will be a proper ideal containing J .

A division algebra is one where every nonzero element is invertible.

Proposition 9.13 If M is a maximal proper ideal of L, then A = L/M is
a division algebra.

Proof. Suppose C ∈ A, C 6= 0, and C is not invertible. Then J = CA =
{CM : M ∈ A} is a proper ideal contained in A. Let q : L → L/M = A
be the usual map. R = q−1(J ) is easily checked to be a proper ideal in L.
If M ∈ M, then q(M) = 0. So M = q−1({0}) is contained in R = q−1(J ).
M is a proper subset of R because J 6= {0}. This contradicts that M is
maximal.
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Lemma 9.14 The closure of a proper ideal is a proper ideal.

Proof. The only thing to prove is that I /∈ I. We know I /∈ I, and so if
N ∈ B(I, 1), the ball of radius 1 about I, then N is invertible, and hence
not in I. So B(I, 1) is an open set about I that is disjoint from I. Therefore
I /∈ I.

Lemma 9.15 If M is a maximal proper ideal, then M is closed.

Proof. If not, M is a proper ideal strictly larger than M.

Lemma 9.16 If I is a closed ideal in L, then L/I is a Banach algebra.

Proposition 9.17 If A is a Banach algebra with unit that is a division
algebra, then A is isomorphic to C.

Proof. If K ∈ A, there exists κ ∈ σ(K). So κI−K is not invertible. There-
fore κI −K = 0, or K = κI. The map K → κ is the desired isomorphism.

Theorem 9.18 K ∈ L is invertible if and only if p(K) 6= 0 for all homo-
morphisms p of L into C.

Proof. Suppose K is not invertible. K is in some maximal proper idealM.
Then M is closed, L/M is a division algebra, and is isomorphic to C.

p : L → L/M→ C

is a homomorphism onto C, and its null space is M. Since K ∈ M, then
p(K) = 0.
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9.4 Absolutely convergent Fourier series

Let L be the set of continuous functions from the unit circle S1 to the complex
functions such that f(θ) =

∑
cne

inθ with
∑
|cn| <∞. We let the norm of f

be
∑
|cn|.

We check that L is a Banach algebra. To do that, we use the fact that the
Fourier coefficients for fg are the convolution of those for f and those for g,
and that the convolution of two `1 functions is in `1, so fg ∈ L. Here is the
verification. If f has Fourier coefficients an and g has Fourier coefficients bn,
let

cn =
∑
j

ajbn−j.

Then to see that cn are the Fourier coefficients of fg, write∑
n

cne
inx =

∑
n

∑
j

ajbn−je
i(n−j)xeijx

=
∑
k

∑
j

ajbke
ikxeijx = f(x)g(x).

To see that the norm of fg is less than or equal to the norm of f times the
norm of g, ∑

n

|cn| ≤
∑
n

∑
j

|aj| |bn−j| =
∑
k

∑
j

|aj| |bk|.

If w ∈ S1, set pw(f) = f(w). pw is a homomorphism from L to C.

Proposition 9.19 If p is a homomorphism from L to C, then there exists
w such that p(f) = f(w) for all f ∈ L.

Proof. p(I) = 1 and |p(M)| ≤ ‖M‖, so p has norm 1. Then

|p(eiθ)| ≤ 1, |p(e−iθ)| ≤ 1,

and
1 = p(1) = p(eiθ)p(e−iθ).

We must have |p(eiθ)| = 1, or we would have inequality in the above.
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Therefore there exists w such that p(eiθ) = eiw. Since p is a homomor-
phism, by induction p(einθ) = einw. By linearity,

p
( N∑
n=−N

cne
inθ
)

=
N∑

n=−N

cne
inw.

If f ∈ L, since p is continuous and
∑
|cn| <∞, we have p(f) = f(w).

Theorem 9.20 Suppose f has an absolutely convergent Fourier series and f
is never 0 on S1. Then 1/f also has an absolutely convergent Fourier series.

Proof. If p is a homomorphism on L, then p(f) = f(w) for some w. Since
f is never 0, p(f) 6= 0 for all non-trivial homomorphisms p. This implies f
is invertible in L.
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Chapter 10

Compact maps

10.1 Basic properties

A subset S is precompact if S is compact. Recall that if A is a subset of
a metric space, A is precompact if and only if every sequence in A has a
subsequence which converges in A. Also, A is compact if and only if A is
complete and totally bounded. Write B1 for the unit ball in X.

A map K from a Banach space X to a Banach space U is compact if
K(B1) is precompact in U .

One example is if K is degenerate, so that RK is finite dimensional. The
identity on `2 is not compact.

The following facts are easy:

(1) If C1, C2 are precompact subsets of a Banach space, then C1 + C2 is
precompact.

(2) If C is precompact, so is the convex hull of C.

(3) If M : X → U and C is precompact in X, then M(C) is precompact
in U .

Proposition 10.1 (1) If K1 and K2 are compact maps, so is kK1 +K2.

(2) If X
L−→U M−→, where M is bounded and L is compact, then ML is

compact.

107
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(3) In the same situation as (2), if L is bounded and M is compact, then
ML is compact.

(4) If Kn are compact maps and lim ‖Kn −K‖ = 0, then K is compact.

Proof. (1) For the sum, (K1 + K2)(B1) ⊂ K1(B1) + K2(B1), and the
multiplication by k is similar.

(2) ML(B1) will be compact because L(B1) is compact and M is contin-
uous.

(3) L(B1) will be contained in some ball, so ML(B1) is precompact.

(4) Let ε > 0. Choose n such that ‖Kn−K‖ < ε. Kn(B1) can be covered
by finitely many balls of radius ε, so K(B1) is covered by the set of balls
with the same centers and radius 2ε. Therefore K(B1) is totally bounded.

We can use (4) to give a more complicated example of a compact operator.
Let X = U = `2 and define

K(a1, a2, . . . , ) = (a1/2, a2/2
2, a3/2

3, . . .).

It is the limit in norm of Kn, where

Kn(a1, a2, . . .) = (a1/2, a2/2
2, . . . , an/2

n, 0, . . .).

Note that any bounded operator K on `2 maps B1 into a set of the form
[−M,M ]N. By Tychonoff, this is compact in the product topology. However
it is not necessarily compact in the topology of the space `2.

Proposition 10.2 If X and Y are Banach spaces and K : X → Y is com-
pact and Z is a closed subspace of X, then the map K |Z is compact.

Let A be a bounded linear operator on a Banach space. If z is a complex
number and I is the identity operator, then zI − A is a bounded linear op-
erator on H which might or might not be invertible. We define the spectrum
of A by

σ(A) = {z ∈ C : zI − A is not invertible}.
We sometimes write z − A for zI − A. The resolvent set for A is the set of
complex numbers z such that z−A is invertible. A non-zero element z is an
eigenvector for A with corresponding eigenvalue λ if Az = λz.
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10.2 Compact symmetric operators

If A is a bounded operator on H, a Hilbert space over the complex numbers,
the adjoint of A, denoted A∗, is the operator on H such that 〈Ax, y〉 =
〈x,A∗y〉 for all x and y.

It follows from the definition that the adjoint of cA is cA∗ and the adjoint
of An is (A∗)n. If P (x) =

∑n
j=0 ajx

j is a polynomial, the adjoint of P (A) =∑n
j=0 ajA

j will be

P (A∗) =
n∑
j=0

ajP (A∗).

The adjoint operator always exists.

Proposition 10.3 If A is a bounded operator on H, there exists a unique
operator A∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for all x and y.

Proof. Fix y for the moment. The function f(x) = 〈Ax, y〉 is a linear
functional on H. By the Riesz representation theorem for Hilbert spaces,
there exists zy such that 〈Ax, y〉 = 〈x, zy〉 for all x. Since

〈x, zy1+y2〉 = 〈Ax, y1 + y2〉 = 〈Ax, y1〉+ 〈Ax, y2〉 = 〈x, zy1〉+ 〈x, zy2〉

for all x, then zy1+y2 = zy1 +zy2 and similarly zcy = czy. If we define A∗y = zy,
this will be the operator we seek.

If A1 and A2 are two operators such that 〈x,A1y〉 = 〈Ax, y〉 = 〈x,A2y〉
for all x and y, then A1y = A2y for all y, so A1 = A2. Thus the uniqueness
assertion is proved.

A bounded linear operator A mapping H into H is called symmetric if

〈Ax, y〉 = 〈x,Ay〉 (10.1)

for all x and y in H. Other names for symmetric are Hermitian or self-
adjoint. When A is symmetric, then A∗ = A, which explains the name
“self-adjoint.”
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Example 10.4 For an example of a symmetric bounded linear operator, let
(X,A, µ) be a measure space with µ a σ-finite measure, let H = L2(X), and
let F (x, y) be a jointly measurable function from X × X into C such that
F (y, x) = F (x, y) and ∫ ∫

F (x, y)2 µ(dx)µ(dy) <∞. (10.2)

Define A : H → H by

Af(x) =

∫
F (x, y)f(y)µ(dy). (10.3)

You can check that A is a bounded symmetric operator.

Here is an example of a compact symmetric operator.

Example 10.5 Let H = L2([0, 1]) and let F : [0, 1]2 → R be a continuous
function with F (x, y) = F (y, x) for all x and y. Define K : H → H by

Kf(x) =

∫ 1

0

F (x, y)f(y) dy.

We discussed in Example 10.4 the fact that K is a bounded symmetric op-
erator. Let us show that it is compact.

If f ∈ L2([0, 1]) with ‖f‖ ≤ 1, then

|Kf(x)−Kf(x′)| =
∣∣∣ ∫ 1

0

[F (x, y)− F (x′, y)]f(y) dy
∣∣∣

≤
(∫ 1

0

|F (x, y)− F (x′, y)|2 dy
)1/2
‖f‖,

using the Cauchy-Schwarz inequality. Since F is continuous on [0, 1]2, which
is a compact set, then it is uniformly continuous there. Let ε > 0. There
exists δ such that

sup
|x−x′|<δ

sup
y
|F (x, y)− F (x′, y)| < ε.

Hence if |x− x′| < δ, then |Kf(x)−Kf(x′)| < ε for every f with ‖f‖ ≤ 1.
In other words, {Kf : ‖f‖ ≤ 1} is an equicontinuous family.
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Since F is continuous, it is bounded, say by N , and therefore

|Kf(x)| ≤
∫ 1

0

N |f(y)| dy ≤ N‖f‖,

again using the Cauchy-Schwarz inequality. If Kfn is a sequence in K(B1),
then {Kfn} is a bounded equicontinuous family of functions on [0, 1], and by
the Ascoli-Arzelà theorem, there is a subsequence which converges uniformly
on [0, 1]. It follows that this subsequence also converges with respect to the
L2 norm. Since every sequence in K(B1) has a subsequence which converges,
the closure of K(B1) is compact. Thus K is a compact operator.

We have the following proposition.

Proposition 10.6 Suppose A is a bounded symmetric operator.
(1) (Ax, x) is real for all x ∈ H.
(2) The function x→ 〈Ax, x〉 is not identically 0 unless A = 0.
(3) ‖A‖ = sup‖x‖=1 |〈Ax, x〉|.

Proof. (1) This one is easy since

〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉,

where we use z for the complex conjugate of z.

(2) If 〈Ax, x〉 = 0 for all x, then

0 = 〈A(x+ y), x+ y〉 = 〈Ax, x〉+ 〈Ay, y〉+ 〈Ax, y〉+ 〈Ay, x〉
= 〈Ax, y〉+ 〈y, Ax〉 = 〈Ax, y〉+ 〈Ax, y〉.

Hence Re 〈Ax, y〉 = 0. Replacing x by ix and using linearity,

Im (〈Ax, y〉) = −Re (i〈Ax, y〉) = −Re (〈A(ix), y〉) = 0.

Therefore 〈Ax, y〉 = 0 for all x and y. We conclude Ax = 0 for all x, and
thus A = 0.

(3) Let β = sup‖x‖=1 |〈Ax, x〉|. By the Cauchy-Schwarz inequality,

|〈Ax, x〉| ≤ ‖Ax‖ ‖x‖ ≤ ‖A‖ ‖x‖2,
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so β ≤ ‖A‖.
To get the other direction, let ‖x‖ = 1 and let y ∈ H such that ‖y‖ = 1

and 〈y, Ax〉 is real. Then

〈y, Ax〉 = 1
4
(〈x+ y, A(x+ y)〉 − 〈x− y, A(x− y)〉).

We used that 〈y, Ax〉 = 〈Ay, x〉 = 〈Ax, y〉 = 〈x,Ay〉 since 〈y, Ax〉 is real and
A is symmetric. Then

16|〈y, Ax〉|2 ≤ β2(‖x+ y‖2 + ‖x− y‖2)2

= 4β2(‖x‖2 + ‖y‖2)2

= 16β2.

We used the parallelogram law (equation (4.1)) in the first equality. We
conclude |〈y, Ax〉| ≤ β.

If ‖y‖ = 1 but 〈y, Ax〉 = reiθ is not real, let y′ = e−iθy and apply the
above with y′ instead of y. We then have

|〈y, Ax〉| = |〈y′, Ax〉| ≤ β.

Setting y = Ax/‖Ax‖, we have ‖Ax‖ ≤ β. Taking the supremum over x
with ‖x‖ = 1, we conclude ‖A‖ ≤ β.

If (Ax, x) ≥ 0 for all x, we say A is positive, and write A ≥ 0. Writing
A ≤ B means B−A ≥ 0. For matrices, one uses the words “positive definite.”

Now suppose A is compact.

Proposition 10.7 If xn
w−→, then Axn

s−→.

Proof. If xn
w−→x, then Axn

w−→Ax, since 〈Axn, y〉 = 〈xn, Ay〉 → 〈x,Ay〉 =
〈Ax, y〉. If xn converges weakly, then ‖xn‖ is bounded so Axn lies in a
precompact set.

Any subsequence ofAxn has a further subsequence which converges strong-
ly. The limit must be Ax.

We will use the following easy lemma repeatedly.
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Lemma 10.8 If K is a compact operator and {xn} is a sequence with ‖xn‖ ≤
1 for each n, then {Kxn} has a convergent subsequence.

Proof. Since ‖xn‖ ≤ 1, then {1
2
xn} ⊂ B1. Hence {1

2
Kxn} = {K(1

2
xn)} is a

sequence contained in K(B1), a compact set and therefore has a convergent
subsequence.

We now prove the spectral theorem for compact symmetric operators.

Theorem 10.9 Suppose H is a separable Hilbert space over the complex
numbers and K is a compact symmetric linear operator. There exist a se-
quence {zn} in H and a sequence {λn} in R such that
(1) {zn} is an orthonormal basis for H,
(2) each zn is an eigenvector with eigenvalue λn, that is, Kzn = λnzn,
(3) for each λn 6= 0, the dimension of the linear space {x ∈ H : Kx = λnx}
is finite,
(4) the only limit point, if any, of {λn} is 0; if there are infinitely many
distinct eigenvalues, then 0 is a limit point of {λn}.

Note that part of the assertion of the theorem is that the eigenvalues are
real. (3) is usually phrased as saying the non-zero eigenvalues have finite
multiplicity.

Proof. If K = 0, any orthonormal basis will do for {zn} and all the λn
are zero, so we suppose K 6= 0. We first show that the eigenvalues are real,
that eigenvectors corresponding to distinct eigenvalues are orthogonal, the
multiplicity of non-zero eigenvalues is finite, and that 0 is the only limit point
of the set of eigenvalues. We then show how to sequentially construct a set
of eigenvectors and that this construction yields a basis.

If λn is an eigenvalue corresponding to a eigenvector zn 6= 0, we see that

λn〈zn, zn〉 = 〈λnzn, zn〉 = 〈Kzn, zn〉 = 〈zn, Kzn〉
= 〈zn, λnzn〉 = λn〈zn, zn〉,

which proves that λn is real.
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If λn 6= λm are two distinct eigenvalues corresponding to the eigenvectors
zn and zm, we observe that

λn〈zn, zm〉 = 〈λnzn, zm〉 = 〈Kzn, zm〉 = 〈zn, Kzm〉
= 〈zn, λmzm〉 = λm〈zn, zm〉,

using that λm is real. Since λn 6= λm, we conclude 〈zn, zm〉 = 0.

Suppose λn 6= 0 and that there are infinitely many orthonormal vectors
xk such that Kxk = λnxk. Then

‖xk − xj‖2 = 〈xk − xj, xk − xj〉 = ‖xk‖2 − 2〈xk, xj〉+ ‖xj‖2 = 2

if j 6= k. But then no subsequence of λnxk = Kxk can converge, a contradic-
tion to Lemma 10.8. Therefore the multiplicity of λn is finite.

Suppose we have a sequence of distinct non-zero eigenvalues converging to
a real number λ 6= 0 and a corresponding sequence of eigenvectors each with
norm one. Since K is compact, there is a subsequence {nj} such that Kznj
converges to a point in H, say w. Then

znj =
1

λnj
Kznj →

1

λ
w,

or {znj} is an orthonormal sequence of vectors converging to λ−1w. But as
in the preceding paragraph, we cannot have such a sequence.

Since {λn} ⊂ B(0, r(K)), a bounded subset of the complex plane, if the
set {λn} is infinite, there will be a subsequence which converges. By the
preceding paragraph, 0 must be a limit point of the subsequence.

We now turn to constructing eigenvectors. By Lemma 10.6(3), we have

‖K‖ = sup
‖x‖=1

|〈Kx, x〉|.

We claim the maximum is attained. If sup‖x‖=1 〈Kx, x〉 = ‖K‖, let λ = ‖K‖;
otherwise let λ = −‖K‖. Choose xn with ‖xn‖ = 1 such that 〈Kxn, xn〉
converges to λ. There exists a subsequence {nj} such that Kxnj converges,
say to z. Since λ 6= 0, then z 6= 0, for otherwise λ = limj→∞ 〈Kxnj , xnj〉 = 0.
Now

‖(K − λI)z‖2 = lim
j→∞
‖(K − λI)Kxnj‖2

≤ ‖K‖2 lim
j→∞
‖(K − λI)xnj‖2
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and

‖(K − λI)xnj‖2 = ‖Kxnj‖2 + λ2‖xnj‖2 − 2λ〈xnj , Kxnj〉
≤ ‖K‖2 + λ2 − 2λ〈xnj , Kxnj〉
→ λ2 + λ2 − 2λ2 = 0.

Therefore (K − λI)z = 0, or z is an eigenvector for K with corresponding
eigenvalue λ.

Suppose we have found eigenvalues z1, z2, . . . , zn. Let Xn be the linear
subspace spanned by {z1, . . . , zn} and let Y = X⊥n be the orthogonal com-
plement of Xn, that is, the set of all vectors orthogonal to every vector in
Xn. If x ∈ Y and k ≤ n, then

〈Kx, zk〉 = 〈x,Kzk〉 = λk〈x, zk〉 = 0,

or Kx ∈ Y . Hence K maps Y into Y . It is an exercise to show that K|Y is
a compact symmetric operator. If Y is non-zero, we can then look at K|Y ,
and find a new eigenvector zn+1.

It remains to prove that the set of eigenvectors forms a basis. Suppose y
is orthogonal to every eigenvector. Then

〈Ky, zk〉 = 〈y,Kzk〉 = 〈y, λkzk〉 = 0

if zk is an eigenvector with eigenvalue λk, so Ky is also orthogonal to every
eigenvector. Suppose X is the closure of the linear subspace spanned by {zk},
Y = X⊥, and Y 6= {0}. If y ∈ Y , then 〈Ky, zk〉 = 0 for each eigenvector
zk, hence 〈Ky, z〉 = 0 for every z ∈ X, or K : Y → Y . Thus K|Y is
a compact symmetric operator, and by the argument already given, there
exists an eigenvector for K|Y . This is a contradiction since Y is orthogonal
to every eigenvector.

Remark 10.10 If {zn} is an orthonormal basis of eigenvectors for K with
corresponding eigenvalues λn, let En be the projection onto the subspace
spanned by zn, that is, Enx = 〈x, zn〉zn. A vector x can be written as∑

n 〈x, zn〉zn, thus Kx =
∑

n λn〈x, zn〉zn. We can then write

K =
∑
n

λnEn.
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For general bounded symmetric operators there is a related expansion where
the sum gets replaced by an integral, which we’ll do later on.

Remark 10.11 If zn is an eigenvector for K with corresponding eigenvalue
λn, then Kzn = λnzn, so

K2zn = K(Kzn) = K(λnzn) = λnKzn = (λn)2zn.

More generally, Kjzn = (λn)jzn. Using the notation of Remark 10.10, we
can write

Kj =
∑
n

(λn)jEn.

If Q is any polynomial, we can then use linearity to write

Q(K) =
∑
n

Q(λn)En.

It is a small step from here to make the definition

f(K) =
∑
n

f(λn)En

for any bounded and Borel measurable function f .

If α1 ≥ α2 ≥ · · · > 0 and Azn = αnzn, then our construction shows that

αN = max
x⊥z1,··· ,zN−1

〈Ax, x〉
‖x‖2

.

This is known as the Rayleigh principle.

Let

RA(x) =
〈Ax, x〉
‖x‖2

.

Proposition 10.12 Let A be compact and symmetric and let αk be the non-
negative eigenvalues with α1 ≥ α2 ≥ · · · . Then

(1) (Fisher’s principle)

αN = max
SN

min
x∈SN

RA(x),



10.2. COMPACT SYMMETRIC OPERATORS 117

where the maximum is over all linear subspaces SN of dimension N .

(2) (Courant’s principle)

αN = min
SN−1

max
x⊥SN−1

RA(x),

where the minimum is over all linear subspaces of dimension N − 1.

Proof. Let z1, . . . , zN be eigenvectors with corresponding eigenvalues α1 ≥
α2 ≥ · · · ≥ αN . Let TN be the linear subspace spanned by {z1, . . . , zN}. If
y ∈ TN , we have y =

∑N
j=1 cjzj for some complex numbers cj and then

〈Ay, y〉 =
N∑
i=1

N∑
j=1

cicj〈Azi, zj〉 =
∑
i

∑
j

cicjαi〈zi, zj〉

=
∑
i

|ci|2αi ≥
∑
i

|ci|2αN

= 〈y, y〉

using the fact that the zi are orthogonal by our construction.

(1) Let zk be the eigenvectors. Let SN be a subspace of dimension N .
There exists y ∈ SN such that 〈y, zk〉 = 0 for k = 1, . . . , N − 1. Since

αN = max
x⊥z1,...,zN−1

RA(x),

then y is one of the vectors over which the max is being taken, so RA(y) ≤ αN
for this y. So minx∈SN RA(x) ≤ αN . This is true for all spaces of dimension
N . So the right hand side is less than or equal to αN .

Now we show the right hand side is greater than or equal to αN . Let SN be
the linear span of {z1, . . . , zN}. By the first paragraph of the proof, RA(x) ≥
αN for every x ∈ SN , and RA(x) = αN when x = zN . So minx∈SN RA(x) =
αN . The maximum over all subspaces of dimension N will be larger than the
value for this particular subspace, so the right hand side is at least as large
as αN .

(2) Let SN−1 be a subspace of dimension N − 1 and let TN be the span
of {z1, . . . , zN}. Since the dimension of TN is larger than that of SN−1,
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there must be a vector y ∈ TN perpendicular to SN−1. Since y ∈ TN , then
RA(y) ≥ αN by the first paragraph of this proof, so

max
x⊥SN−1

RA(x) ≥ RA(y) ≥ αN .

Taking the minimum over all spaces SN−1 shows that right hand side is
greater than or equal to αN .

If x ⊥ TN−1, then x =
∑∞

j=N+1 cjzj, and then

〈Ax, x〉 =
∞∑
j=N

∞∑
k=N

cjckαj〈zj, zk〉

=
∞∑
j=N

αj|cj|2 ≤ αN

∞∑
j=N

|cj|2

= αN〈x, x〉.

Therefore RA(x) ≤ αN . This leads to

min
SN−1

max
x⊥SN−1

RA(x) ≤ max
x⊥TN−1

RA(x) ≤ αN ,

since TN−1 is a particular subspace of dimension N − 1.

Proposition 10.13 Suppose A ≤ B with eigenvalues αk, βk, resp., ordered
to be decreasing. Then αk ≤ βk for all k.

Proof. A ≤ B implies 〈Ax, x〉 ≤ 〈Bx, x〉, so RA(x) ≤ RB(x). Now use
either Fisher’s or Courant’s principle.

10.3 Mercer’s theorem

We will need to use Dini’s theorem from analysis.

Proposition 10.14 Suppose gn are continuous functions on [0, 1] with gn(x)
≤ gn+1(x) for each n and x and g∞(x) = limn→∞ gn(x) is continuous. Then
gn converges to g uniformly.
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Proof. Let fn = g∞ − gn, so the fn are continuous and decrease to 0.
Let ε > 0. If Gn(x) = {x ∈ [0, 1] : fn(x) < ε}, then Gn is an open set
(with respect to the relative topology on [0, 1]), since fn is continuous. Since
fn(x)→ 0, each x will be in some Gn. Thus {Gn} is an open cover for [0, 1].
Let Gn1 , . . . , Gnm be a finite subcover. If n ≥ max(n1, . . . , nm) and x ∈ [0, 1],
then x is in some Gnj and fn(x) ≤ fnj(x) < ε. Thus the convergence is
uniform.

Define K : L2[0, 1]→ L2[0, 1] by

Ku(x) =

∫ 1

0

K(x, y)u(y) dy.

K∗ has kernel K(y, x).

Suppose K is continuous, symmetric, and real-valued. Then K is compact,
as we showed before. Therefore there exists a complete orthonormal system
{ej} of eigenvectors. Let κj be the eigenvalue corresponding to ej. K : L2 →
C[0, 1], so ej = κ−1j Kej is continuous if κj 6= 0.

Theorem 10.15 (Mercer) Suppose K is real-valued, symmetric, and con-
tinuous. Suppose K is positive: 〈Ku, u〉 ≥ 0 for all u ∈ H. Then

K(x, y) =
∑
j

κjej(x)ej(y),

and the series converges uniformly and absolutely.

An example is to let K = Pt, the transition density of absorbing or re-
flecting Brownian motion.

Proof. First we observe that the κj are non-negative. To see this, let u = ej,
and we have

0 ≤ 〈ej, Kej〉 = κj〈ej, ej〉.

K ≥ 0 on the diagonal: Suppose K(r, r) < 0 for some r. Then K(x, y) < 0
if |x− r|, |y − r| < δ for some δ. Take u = χ[r−δ/2,r+δ/2]. Then

〈Ku, u〉 =

∫ ∫
K(x, y)u(y)x(s) ds dt < 0,
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a contradiction.

Let KN(x, y) =
∑N

j=1 κjej(x)ej(y). If f =
∑∞

k=1 〈f, ek〉ek, we have

KNf(x) =

∫ 1

0

N∑
j=1

κjej(x)ej(y)
∞∑
k=1

〈f, ek〉ek(y) dy

=
N∑
j=1

κj〈f, ej〉ej(x).

We have

Kf(x) =
∞∑
j=1

〈f, ej〉Kej(x) =
∞∑
j=1

〈f, ej〉κjej(x).

We conclude that K −KN is a positive operator, since

〈f, (K −KN)f〉 =
∞∑
k=1

N∑
j=1

κj|〈f, ej〉|2〈ek, ej〉 =
N∑
j=1

κj|〈f, ej〉|2 ≥ 0.

As above, K −KN is non-negative on the diagonal, which implies that

N∑
j=1

κj|ej(x)|2 ≤ K(x, x).

Each term is non-negative, so the sum converges for each x. Let J(x) be the
limit.

Let M = supx,y∈[0,1] |K(x, y)|. By Cauchy-Schwarz,

|KN(x, y)| ≤
( N∑
j=1

κj|ej(x)|2
)1/2( N∑

j=1

κj|ej(y)|2
)1/2

= (KN(x, x))1/2(KN(y, y))1/2.
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Fix x. By the same argument,∣∣∣ n∑
j=m

κjej(x)ej(y)
∣∣∣

≤
( n∑
j=m

κj|ej(x)|2
)1/2( n∑

j=m

κj|ej(y)|2
)1/2

≤
( n∑
j=m

κj|ej(x)|2
)1/2

M1/2.

The last line goes to 0 as m,n→∞ since KN(x, x)→ J(x) ≤M. Therefore,
for each x, the functions KN(x, ·) converge uniformly. Let’s call the limit
L(x, y). Then L(x, y) will be continuous in y for each x.

Given f , let

fN(x) =
N∑
j=1

〈f, ej〉ej(x).

Note

KfN(x) =
N∑
j=1

〈f, ej〉Kej(x)

=
N∑
j=1

〈f, ej〉κjej(x)

= KNf(x).

We have

‖f − fN‖2 =
∞∑

j=N+1

|〈f, ej〉|2 → 0

as N →∞ by Bessel’s inequality, so

|Kf(x)−KfN(x)| ≤
∫ 1

0

|K(x, y)| |f(y)− fN(y)| dy ≤M‖f − fN‖

by Cauchy-Schwarz. Therefore KNf(x)→ Kf(x) as N →∞.

By dominated convergence,

KNf(x) =

∫ 1

0

KN(x, y)f(y) dy →
∫ 1

0

L(x, y)f(y) dy.
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We therefore have ∫ 1

0

L(x, y)f(y) dy = Kf(x)

for all f ∈ L2[0, 1]. This implies that (x is still fixed) K(x, y) = L(x, y) for
almost every y. With x fixed, both sides are continuous functions of y, hence
they are equal for every y.

This is true for each x, and K(x, y) is continuous, hence L is continuous.
We now can apply Dini’s theorem to conclude that KN(x, x) converges to
L(x, x) = J(x) uniformly. Finally, again by Cauchy-Schwarz,

n∑
j=m

κj|ej(x)| |ej(y)|

≤
( n∑
j=m

κj|ej(x)|2
)1/2( n∑

j=m

κj|ej(y)|2
)1/2

,

and this proves that KN(x, y) converges to K uniformly and absolutely.

10.4 Positive compact operators

We’ll do the Krein-Rutman theorem, which is a generalization of the Perron-
Frobenius theorem for matrices.

Theorem 10.16 Suppose Q is compact and Hausdorff and X = C(Q), the
complex-valued continuous functions on Q. Suppose K : C(Q) → C(Q)
and K is compact. Suppose further than K maps real-valued functions to
real-valued functions. Finally, suppose that whenever f ≥ 0 and f is not
identically zero, then Kf is strictly positive. Then K has a positive eigen-
value σ of multiplicity one, the associated eigenfunction is positive, and all
the other eigenvalues of K are strictly smaller in absolute value than σ.

Examples include matrices with all positive entries, the semigroup Pt when
t = 1 for reflecting Brownian motion on a bounded interval, and

Kf(x) =

∫
K(x, y)f(y)µ(dy),
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where K is jointly continuous, positive, and µ is a finite measure. We have
seen that the operator K is compact.

Proof. If f ≤ g and f 6≡ g, then g − f ≥ 0, so K(g − f) > 0, or Kf < Kg.

Step 1. We show there exists a non-zero eigenvalue. Let f be the identically
one function. Since Kf is continuous and everywhere positive, there exists
a positive number b such that Kf ≥ b = bf .

If f and b are any pair such that f ≥ 0, and Kf ≥ bf , then

b2f ≤ bKf = K(bf) ≤ K(Kf) = K2f,

and continuing,
bnf ≤ Knf.

Since f ≥ 0,
bn‖f‖ ≤ ‖Knf‖ ≤ ‖Kn‖ ‖f‖,

so
r(K) = lim ‖Kn‖1/n ≥ b.

Therefore r(K) is strictly positive. Since K is compact, the set of eigenvalues
of K is nonempty. We have shown that there exists a non-zero eigenvalue
for K. Moreover, any b that satisfies Kf ≥ bf for some f ≥ 0 is less than or
equal to r(K).

Step 2. K is compact, so there exists an eigenvalue λ and an eigenfunction
g such that Kg = λg, |λ| = r(K). Let λ and g be any pair with |λ| = r(K).

(a) We claim: if f = |g| and σ = |λ|, then σf ≤ Kf .

Proof: Let x ∈ Q. Multiply g by α ∈ C such that |α| = 1 and αλg(x) is
real and non-negative. Of course α depends on x. Write g = u+ iv. Then

Ku(x) + iKv(x) = Kg(x) = λg(x).

Looking at the real part,

λg(x) = (Ku)(x).

Next, u ≤ |g| = f , and

|λ|f(x) = |λg(x)| = Ku(x) ≤ (Kf)(x). (10.4)
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Then
σf(x) ≤ Kf(x). (10.5)

Although g depends on α, which depends on x, neither σ nor f depend on
x. Since x was arbitrary, the inequality (10.5) holds for all x.

(b) We claim
σf = Kf.

Proof: If not, there exists x such that σf(x) < Kf(x). By continuity,
there exists a neighborhood N about x such that

σf(s) + δ ≤ Kf(s), s ∈ N.

Let h > 0 in N , 0 outside of N , and so Kh > 0.

We will find c, ε > 0 and set F = f + εh, κ = σ + cε, and get κF ≤ KF .
This will be a contradiction to Step 1: if bf ≤ Kf , then we know b ≤ r(K);
use this with b replaced by κ and f replaced by F .

(i) Now Kh > 0, so there exists c ≤ 1 such that cf ≤ Kh. If s ∈ N ,

KF (s) = Kf(s) + εKh(s) ≥ Kf(s) + εcf(s)

≥ σf(s) + δ + εcf(s).

Then

κF (s) = (σ + cε)(f + εh)(s) = σf(s) + εcf(s) + σεh(s)

+ cε2h(s)

≤ KF (s)− δ + εcf(s) + σεh(s) + cε2h(s).

Since h is bounded above, we can take ε small enough so that the last line is
less than or equal to KF (s).

(ii) If s /∈ N , then h(s) = 0 and

κF (s) = κf(s) = (σ + cε)f(s) = σf(s) + εcf(s)

≤ Kf(s) + εKh(s) = KF (s),

using that cf ≤ Kh.

Step 3. We next show that any other eigenvalue that has absolute value σ
is in fact equal to σ. Let G be any eigenfunction corresponding to λ with
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|λ| = σ. Fix x ∈ Q. As before, we may assume λG(x) ≥ 0. As before, write
G = u+ iv and then λG(x) = Ku(x). We have u ≤ |G| = f .

Suppose u < f at some point y ∈ Q. Then u ≤ f and u < f at one point
means that we have Ku < Kf at every point, and so

|λ|f(x) = |λG(x)| = λG(x) = Ku(x) < Kf(x).

So σf(x)) < Kf(x). But we showed σf = Kf . Therefore u is identically
equal to f . This implies that G is real and positive, and then it follows that
λ is real and positive. Since G = σ−1KG, G is strictly positive.

Step 4. Finally, we show σ has multiplicity 1. If not, there exist distinct real
eigenfunctions f1, f2. But some linear combination H of f1, f2 will be real,
take the value 0, but not be identically zero. As before |H| will be an eigen-
function that is non-negative, and must also take the value 0. Moreover the
corresponding eigenvalue is σ. But then 0 < K|H| = σ|H|, a contradiction
to |H| taking the value 0.
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Chapter 11

Spectral theory

11.1 Preliminaries

Suppose A is a bounded linear operator over a complex-valued Hilbert space.
If y ∈ H is fixed, then `(x) = 〈Ax, y〉 is a bounded linear functional on H.
Therefore there exists z = zy ∈ H such that `(x) = 〈x, z〉 for all x. We define
A∗y = zy, so we have

〈Ax, y〉 = 〈x,A∗y〉
for all x and y.

Note

〈x,A∗(y1 + y2)〉 = 〈Ax, y1 + y2〉 = 〈Ax, y1〉+ 〈Ax, y2〉
= 〈x,A∗y1〉+ 〈x,A∗y2〉 = 〈x,A∗y1 + A∗y2〉.

We conclude A∗(y1 + y2) = A∗y1 + A∗y2. Similarly A∗(cy) = cA∗y, so A∗ is
a linear operator.

If x, y ∈ H, we have

|〈x,A∗y〉| = |〈Ax, y〉| ≤ ‖A‖ ‖x‖ ‖y‖.

Taking the supremum over ‖x‖ = 1, we have ‖A∗y‖ ≤ ‖A‖ ‖y‖, and taking
the supremum over ‖y‖ = 1, we get ‖A∗‖ ≤ ‖A‖. Replacing A by A∗ we
obtain ‖A∗∗‖ ≤ ‖A∗‖ and noticing that A∗∗ = A, we have

‖A∗‖ = ‖A‖.

127
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It is easy to check that (A+B)∗ = A∗ +B∗, and since

〈cAx, y〉 = c〈Ax, y〉 = c〈x,A∗y〉 = 〈x, cA∗y〉

for all x and y, we have (cA)∗ = cA∗. We note that

〈A2x, y〉 = 〈Ax,A∗y〉 = 〈x, (A∗)2y〉,

so(A2)∗ = (A∗)2. This holds for all positive powers n by an induction ar-
gument. If P (z) =

∑n
j=0 cjz

j, let P (z) =
∑n

j=0 cjz
n. We then have that

P (A)∗ = P (A∗).

In the case that H = Cn, we can identify vectors in Cn with n×1 matrices
and an operator A is identified with a n × n matrix. Then 〈X, Y 〉 = XTY ,
where BT is the transpose of a matrix B. Saying 〈AX, Y 〉 = 〈X,A∗Y 〉 is the
same as saying that XTATY = (AX)TY is equal to XTA

∗
Y for all X and

Y . Hence AT = A
∗
, or A∗ = A

T
, the conjugate transpose of A.

We say A is a symmetric operator over a complex-valued Hilbert space if
A = A∗, or equivalently, if 〈Ax, y〉 = 〈x,Ay〉 for all x and y ∈ H.

If A is compact, we can write x =
∑
anen and Ax =

∑
λnanen. Let En

be the projection onto the eigenspace with eigenvector λn, so x =
∑
Enx

and Ax =
∑
λnEn(x).

If we define a projection-valued measure E(S) by

E(S) =
∑
λn∈S

En

for S a Borel subset of R, then x =
∫
E(dλ)x and Ax =

∫
λE(dλ)x.

Here E is a pure point measure. In general, we get the same result, but
E might not be pure point.

When we move away from compact operators, the spectrum can become
much more complicated. Let us look at an instructive example.

Example 11.1 Let H = L2([0, 1]) and define A : H → H by Af(x) =
xf(x). There is no difficulty seeing that A is bounded and symmetric.

We first show that no point in [0, 1]c is in the spectrum of A. If z is a
fixed complex number and either has a non-zero imaginary part or has a real
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part that is not in [0, 1], then z − A has the inverse Bf(x) = 1
z−xf(x). It is

obvious that B is in fact the inverse of z − A and it is a bounded operator
because 1/|z − x| is bounded on x ∈ [0, 1].

If z ∈ [0, 1], we claim z−A does not have a bounded inverse. The function
that is identically equal to 1 is in L2([0, 1]). The only function g that satisfies
(z − A)g = 1 is g = 1/(z − x), but g is not in L2([0, 1]), hence the range of
z − A is not all of H.

We conclude that σ(A) = [0, 1]. We show now, however, that no point
in [0, 1] is an eigenvalue for A. If z ∈ [0, 1] were an eigenvalue, then there
would exist a non-zero f such that (z − A)f = 0. Since our Hilbert space is
L2, saying f is non-zero means that the set of x where f(x) 6= 0 has positive
Lebesgue measure. But (z−A)f = 0 implies that (z−x)f(x) = 0 a.e., which
forces f = 0 a.e. Thus A has no eigenvalues.

We have shown that the spectrum of a bounded symmetric operator is
closed and bounded and never empty because the collection of bounded sym-
metric operators is a Banach algebra, although not a commutative one.

We proved the spectral radius formula when we studied Banach algebras:

r(A) = lim
n→∞

‖An‖1/n.

We have the following important corollary.

Proposition 11.2 If A is a symmetric operator, then

‖A‖ = r(A).

Proof. It suffices to show that ‖An‖ = ‖A‖n when n is a power of 2. We
show this for n = 2 and the general case follows by induction.

On the one hand, ‖A2‖ ≤ ‖A‖2. On the other hand,

‖A‖2 = ( sup
‖x‖=1

‖Ax‖)2 = sup
‖x‖=1

‖Ax‖2

= sup
‖x‖=1

〈Ax,Ax〉 = sup
‖x‖=1

〈A2x, x〉

≤ ‖A2‖
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by the Cauchy-Schwarz inequality.

The following corollary will be important in the proof of the spectral
theorem.

Corollary 11.3 Let A be a symmetric bounded linear operator.
(1) If P is a polynomial with real coefficients, then

‖P (A)‖ = sup
z∈σ(A)

|P (z)|.

(2) If P is a polynomial with complex coefficients, then

‖P (A)‖ ≤ 2 sup
z∈σ(A)

|P (z)|.

A later proposition will provide an improvement of assertion (2).

Proof. (1) Since P has real coefficients, then P (A) is symmetric and

‖P (A)‖ = r(P (A)) = sup
z∈σ(P (A))

|z|

= sup
z∈P (σ(A))

|z| = sup
w∈σ(A)

|P (w)|,

where we used Corollary 11.2 for the first equality and the spectral mapping
theorem for the third.

(2) If P (z) =
∑n

j=0(aj + ibj)z
j, let Q(z) =

∑n
j=0 ajz

n and R(z) =∑m
j=0 bjz

n. By (1),

‖P (A)‖ ≤ ‖Q(A)‖+ ‖R(A)‖ ≤ sup
z∈σ(A)

|Q(z)|+ sup
z∈σ(A)

|R(z)|,

and (2) follows.

We will also need the fact that the spectrum of a bounded symmetric
operator is real. We know that each eigenvalue of a bounded symmetric
operator is real, but as we have seen, not every element of the spectrum is
an eigenvalue.
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Proposition 11.4 If A is bounded and symmetric, then σ(A) ⊂ R.

Proof. Suppose λ = a + ib, b 6= 0. We want to show that λ is not in the
spectrum.

If r and s are real numbers, rewriting the inequality (r − s)2 ≥ 0 yields
the inequality 2rs ≤ r2 + s2. By the Cauchy-Schwarz inequality

2a〈x,Ax〉 ≤ 2|a| ‖x‖ ‖Ax‖ ≤ a2‖x‖2 + ‖Ax‖2.

We then obtain the inequality

‖(λ− A)x‖2 = 〈(a+ bi− A)x, (a+ bi− A)x〉
= (a2 + b2)‖x‖2 + ‖Ax‖2 − (a+ bi)〈Ax, x〉
− (a− bi)〈x,Ax〉

= (a2 + b2)‖x‖2 + ‖Ax‖2 − 2a〈Ax, x〉
≥ b2‖x‖2. (11.1)

This inequality shows that λ−A is one-to-one, for if (λ−A)x1 = (λ−A)x2,
then

0 = ‖(λ− A)(x1 − x2)‖ ≥ b2‖x1 − x2‖2.

Suppose λ is in the spectrum of A. Since λ − A is one-to-one but not
invertible, it cannot be onto. Let R be the range of λ − A. We next argue
that R is closed.

If yk = (λ− A)xk and yk → y, then (11.1) shows that

b2‖xk − xm‖2 ≤ ‖yk − ym‖2,

or xk is a Cauchy sequence. If x is the limit of this sequence, then

(λ− A)x = lim
n→∞

(λ− A)xk = lim
n→∞

yk = y.

Therefore R is a closed subspace of H but is not equal to H. Choose
z ∈ R⊥. For all x ∈ H,

0 = 〈(λ− A)x, z〉 = 〈x, (λ− A)z〉.
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This implies that (λ−A)z = 0, or λ is an eigenvalue for A with correspond-
ing eigenvector z. However we know that all the eigenvalues of a bounded
symmetric operator are real, hence λ is real. This shows λ is real, a contra-
diction.

11.2 Functional calculus

Let f be a continuous function on C and let A be a bounded symmetric
operator on a separable Hilbert space over the complex numbers. We describe
how to define f(A).

We have shown that the spectrum of A is a closed and bounded subset of
C, hence a compact set. By the Stone-Weierstrass theorem we can find poly-
nomials Pn (with complex coefficients) such that Pn converges to f uniformly
on σ(A). Then

sup
z∈σ(A)

|(Pn − Pm)(z)| → 0

as n,m→∞. By Corollary 11.3

‖(Pn − Pm)(A)‖ → 0

as n,m→∞, or in other words, Pn(A) is a Cauchy sequence in the space L
of bounded symmetric linear operators on H. We call the limit f(A).

The limit is independent of the sequence of polynomials we choose. If Qn

is another sequence of polynomials converging to f uniformly on σ(A), then

lim
n→∞

‖Pn(A)−Qn(A)‖ ≤ 2 sup
z∈σ(A)

|(Pn −Qn)(z)| → 0,

so Qn(A) has the same limit Pn(A) does.

We record the following facts about the operators f(A) when f is contin-
uous.

Proposition 11.5 Let f be continuous on σ(A).
(1) 〈f(A)x, y〉 = 〈x, f(A)y〉 for all x, y ∈ H.
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(2) If f is equal to 1 on σ(A), then f(A) = I, the identity.
(3) If f(z) = z on σ(A), then f(A) = A.
(4) f(A) and A commute.
(5) If f and g are two continuous functions, then (f + g)(A) = f(A) + g(A)
and f(A)g(A) = (fg)(A).
(6) ‖f(A)‖ ≤ supz∈σ(A) |f(z)|.

Proof. The proofs of (1)-(4) are routine and follow from the corresponding
properties of Pn(A) when Pn is a polynomial. Let us prove (5) and (6) and
leave the proofs of the others to the reader.

(5) Let Pn and Qn be polynomials converging uniformly on σ(A) to f and
g, respectively. Then PnQn will be polynomials converging uniformly to fg.
The second assertion of (5) now follows from

(fg)(A) = lim
n→∞

(PnQn)(A) = lim
n→∞

Pn(A)Qn(A) = f(A)g(A).

The limits are with respect to the norm on bounded operators on H. The
first assertion of (5) is similar.

(6) Since f is continuous on σ(A), so is g = |f |2. Let Pn be polynomi-
als with real coefficients converging to g uniformly on σ(A). By Corollary
11.3(1),

‖g(A)‖ = lim
n→∞

‖Pn(A)‖ ≤ lim
n→∞

sup
z∈σ(A)

|Pn(z)| = sup
z∈σ(A)

|g(z)|.

If ‖x‖ = 1, using (1) and (5),

‖f(A)x‖2 = 〈f(A)x, f(A)x〉 = 〈x, f(A)f(A)x〉 = 〈x, g(A)x〉
≤ ‖x‖ ‖g(A)x‖ ≤ ‖g(A)‖ ≤ sup

z∈σ(A)
|g(z)|

= sup
z∈σ(A)

|f(z)|2.

Taking the supremum over the set of x with ‖x‖ = 1 yields

‖f(A)‖2 ≤ sup
z∈σ(A)

|f(z)|2,

and (6) follows.

We have the spectral mapping theorem for continuous functions.
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Theorem 11.6 Suppose A is symmetric and suppose f is continuous on
σ(A). Then

σ(f(A)) = f(σ(A)).

Here f(σ(A)) = {f(λ) : λ ∈ σ(A)}.

Proof. Step 1. Suppose µ /∈ f(σ(A)); we show µ /∈ σ(f(A)), and then
conclude σ(f(A)) ⊂ f(σ(A)). If µ 6= f(λ) for some λ ∈ σ(A), then f(z)− µ
does not vanish on σ(A). So we can find a continuous function g that agrees
with (f(z)− µ)−1 on σ(A).

If we take polynomials Pn converging to f−µ and polynomials converging
to g uniformly on σ(A) and let Rn(z) = (Pn(z) − µ))(Qn(z)) − 1, then Rn

converges uniformly to 0 on σ(A). Therefore Rn(A) converges to 0 in norm.
So

[f(A)− µI]g(A) = I.

Therefore g(A) is the inverse of f(A)− µI, and hence µ /∈ σ(f(A)).

Step 2. We show f(σ(A)) ⊂ σ(f(A)). Suppose λ ∈ σ(A). We need to show
f(λ) ∈ σ(f(A)). Suppose not, that is, f(λ) − f(A) is invertible. Let Pn be
polynomials converging to f uniformly on σ(A). We use the fact that K−B
is invertible if K is invertible and the norm of B is less than 1/‖K−1‖. We
set K = f(λ)− f(A) and

B = f(λ)− Pn(z)− f(A) + Pn(A).

Then if n is sufficiently large and z is sufficiently close to λ, then Pn(z)−Pn(A)
will be invertible. Thus for such n and z, we see that Pn(z) /∈ σ(Pn(A)) =
Pn(σ(A)). Since Pn converges uniformly to f on σ(A), we conclude f(λ) /∈
f(σ(A)), a contradiction.

A is a positive operator if 〈Ax, x〉 ≥ 0 for all x.

Proposition 11.7 Let A be bounded and symmetric. A is positive if and
only if σ(A) ≥ 0.

Proof. If σ(A) ≥ 0, then f(λ) =
√
λ is a continuous real-valued function for

λ ≥ 0, and so N = f(A) =
√
A exists and is a symmetric operator because

N∗ = f(A) = f(A) = N . Then

〈Ax, x〉 = 〈N2x, x〉 = 〈Nx,Nx〉 ≥ 0.
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Now suppose A is positive. If λ ∈ σ(A) is strictly negative,

‖x‖ ‖(A− λ)x‖ ≥ 〈x, (A− λ)x〉 = 〈x,Ax〉 − λ‖x‖2 ≥ −λ‖x‖2,

using Cauchy-Schwarz. Dividing both sides by ‖x‖, we have

‖(λ− A)x‖ ≥ (−λ)‖x‖.

Similarly to the proof that the spectrum of a symmetric operator is contained
in the reals, we see that λ − A is one-to-one, its range R is closed, and λ is
an eigenvalue for A. But then

〈Az, z〉 = 〈λz, z〉 = λ‖z‖2 < 0,

a contradiction, where we used the fact that λ is real and hence λ = λ.

Corollary 11.8 Every positive symmetric operator has a positive symmetric
square root.

11.3 Riesz representation theorem

The Riesz representation theorem for positive linear functionals on C(X) is
proved in real analysis. We will need the version for complex-valued bounded
linear functionals. See [1] for a proof.

Theorem 11.9 If S is a compact metric space and I is a bounded complex-
valued linear functional on C(X), there exists a unique finite complex-valued
measure µ on the Borel σ-algebra such that

I(f) =

∫
f dµ

for each f ∈ C(X). Moreover the total variation of µ is

sup
{∫

f dµ : sup
z∈S
|f(z)| ≤ 1

}
.
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11.4 Spectral resolution

We now want to define f(A) when f is a bounded Borel measurable function
on C. Fix x, y ∈ H. If f is a continuous function on C, let

Lx,yf = 〈f(A)x, y〉. (11.2)

It is easy to check that Lx,y is a bounded linear functional on C(σ(A)), the
set of continuous functions on σ(A). By the Riesz representation theorem for
complex-valued linear functionals, there exists a complex measure µx,y such
that

〈f(A)x, y〉 = Lx,yf =

∫
σ(A)

f(z)µx,y(dz)

for all continuous functions f on σ(A).

Define

Lx,yf =

∫
f(z)µx,y(dz)

for all f that are bounded and Borel measurable on σ(A).

We have the following properties of µx,y.

Proposition 11.10 (1) µx,y is linear in x.
(2) µy,x = µx,y.
(3) The total variation of µx,y is less than or equal to ‖x‖ ‖y‖.

Proof. (1) The linear functional Lx,y defined in (11.2) is linear in x and∫
f d(µx,y + µx′,y) = Lx,yf + Lx′,yf = Lx+x′,yf =

∫
f dµx+x′,y.

By the uniqueness of the Riesz representation, µx+x′,y = µx,y + µx′+y. The
proof that µcx,y = cµx,y is similar.

(2) follows from the fact that if f is continuous on σ(A), then∫
f dµy,x = Ly,xf = 〈f(A)y, x〉 = 〈y, f(A)x〉

= 〈f(A)x, y〉 = Lx,yf =

∫
f dµx,y

=

∫
f dµx,y.
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Now use the uniqueness of the Riesz representation.

(3) This follows from the Riesz representation theorem.

If f is a bounded Borel measurable function on C, then Ly,xf is linear in
y. Note that

|Ly,xf | ≤ sup
z∈σ(A)

|f(z)|‖µx,y‖TV ≤ sup
z∈σ(A)

|f(z)| ‖x‖ ‖y‖,

where TV stands for “total variation.” Thus Ly,x is a bounded linear func-
tional on C with norm bounded by ‖x‖ ‖y‖. By the Riesz representation
theorem for Hilbert spaces, there exists wx ∈ H such that Ly,xf = 〈y, wx〉
for all y ∈ H. We then have that for all y ∈ H,

Lx,yf =

∫
σ(A)

f(z)µx,y(dz) =

∫
σ(A)

f(z)µy,x(dz)

=

∫
σ(A)

f(z)µy,x(dz) = Ly,xf

= 〈y, wx〉 = 〈wx, y〉.

Since

〈y, wx1+x2〉 = Ly,x1+x2f = Ly,x1f + Ly,x2f = 〈y, wx1〉+ 〈y, wx2〉

for all y and

〈y, wcx〉 = Ly,cxf = cLy,xf = c〈y, wx〉 = 〈y, cwx〉

for all y, we see that wx is linear in x. We define f(A) to be the linear
operator on H such that f(A)x = wx.

In the particular case when A is also compact, if (λn, ϕn) are the eigen-
value/eigenvector pairs with {ϕn} an orthonormal basis, we have

x =
∞∑
n=1

〈x, ϕn〉ϕn

and

Ax =
∞∑
n=1

λn〈x, ϕn〉ϕn.



138 CHAPTER 11. SPECTRAL THEORY

Then

A2x =
∞∑
n=1

λn〈x, ϕn〉A2ϕn =
∞∑
n=1

λ2n〈x, ϕn〉ϕn.

Generalizing this, we have

P (A)x =
∞∑
n=1

P (λn)〈x, ϕn〉ϕn,

and passing to the limit for continuous functions, and then for bounded and
Borel measurable f ,

f(A)x =
∞∑
n=1

f(λn)〈x, ϕn〉ϕn.

Specializing further to matrices, if A is a diagonal matrix with diagonal
entries Ajj = λj, then f(A) is the diagonal matrix with diagonal entries
f(λj).

If C is a Borel measurable subset of C, we let

E(C) = χC(A). (11.3)

Remark 11.11 Later on we will write the equation

f(A) =

∫
σ(A)

f(z)E(dz). (11.4)

Let us give the interpretation of this equation. If x, y ∈ H, then

〈E(C)x, y〉 = 〈χC(A)x, y〉 =

∫
σ(A)

χC(z)µx,y(dz).

Therefore we identify 〈E(dz)x, y〉 with µx,y(dz). With this in mind, (11.4) is
to be interpreted to mean that for all x and y,

〈f(A)x, y〉 =

∫
σ(A)

f(z)µx,y(dz).
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Theorem 11.12 (1) E(C) is symmetric.
(2) ‖E(C)‖ ≤ 1.
(3) E(∅) = 0, E(σ(A)) = I.
(4) If C,D are disjoint, E(C ∪D) = E(C) + E(D).
(5) E(C ∩D) = E(C)E(D).
(6) E(C) and A commute.
(7) E(C)2 = E(C), so E(C) is a projection. If C,D are disjoint, then
E(C)E(D) = 0.
(8) E(C) and E(D) commute.

Proof. (1) This follows from

〈x,E(C)y〉 = 〈E(C)y, x〉 =

∫
χC(z)µy,x(dz)

=

∫
χC(z)µx,y(dz) = 〈E(C)x, y〉.

(2) Since the total variation of µx,y is bounded by ‖x‖ ‖y‖, we obtain (2).

(3) µx,y(∅) = 0, so E(∅) = 0. If f is identically equal to 1, then f(A) = I,
and

〈x, y〉 =

∫
σ(A)

µx,y(dz) = 〈E(σ(A))x, y〉.

This is true for all y, so x = E(σ(A))x for all x.

(4) holds because µx,y is a measure, hence finitely additive.

(5) If we prove that

f(A)g(A) = (fg)(A) (11.5)

for f and g bounded and Borel measurable on σ(A), we can apply this with
f = χC and g = χD. Then fg = χC∩D, and we get (5).

Now

〈fn(A)gm(A)x, y〉 = 〈(fngm)(A)x, y〉 (11.6)

when fn and gm are continuous. The right hand side equals∫
(fngm)(z)µx,y(dz),
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which converges to ∫
(fng)(z)µx,y(dz) = 〈(fng)(A)x, y〉

when gm → g boundedly and a.e. with respect to µx,y. The left hand side of
(11.6) equals

〈gm(A)x, fn(A)y〉 =

∫
gm(z)µfn(A)x,y(dz),

which converges to∫
g(z)µfn(A)x,y(dz) = 〈g(A)x, fn(A)y〉

as long as gm also converges a.e. with respect to µfn(A)x,y. So we have

〈fn(A)g(A)x, y〉 = 〈(fng)(A)x, y〉. (11.7)

If we let fn converge to f boundedly and a.e. with respect to µx,y, the
right hand side converges as in the previous paragraph to 〈(fg)(A)x, y〉. The
right hand side of (11.7) is equal to

〈g(A)x, fn(A)y〉 = 〈fn(A)y, g(A)x〉. (11.8)

If fn converges to f a.e with respect to µy,g(A)x, the right hand side of (11.8)
converges by arguments similar to the above to

〈f(A)y, g(A)x〉 = 〈g(A)x, f(A)y〉 = 〈f(A)g(A)x, y〉.

(6) Let h(z) = z and apply (11.5) with f = χC and g = h to get χC(A)A =
(χCh)(A). Then apply (11.5) with f = h and g = χC to get AχC(A) =
(hχC)(A).

(7) Setting C = D in (5) shows E(C) = E(C)2, so E(C) is a projection.
If C ∩D = ∅, then E(C)E(D) = E(∅) = 0, as required.

(8) Writing

E(C)E(D) = E(C ∩D) = E(D ∩ C) = E(D)E(C)
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proves (8).

The family {E(C)}, where C ranges over the Borel subsets of C is called
the spectral resolution of the identity. We explain the name in just a moment.

Here is the spectral theorem for bounded symmetric operators.

Theorem 11.13 Let H be a separable Hilbert space over the complex num-
bers and A a bounded symmetric operator. There exists a operator-valued
measure E satisfying (1)–(8) of Theorem 11.12 such that

f(A) =

∫
σ(A)

f(z)E(dz), (11.9)

for bounded Borel measurable functions f . Moreover, the measure E is
unique.

Remark 11.14 When we say that E is an operator-valued measure, here
we mean that (1)–(8) of Theorem 11.12 hold. We use Remark 11.11 to give
the interpretation of (11.9).

Remark 11.15 If f is identically one, then (11.9) becomes

I =

∫
σ(A)

E(dλ),

which shows that {E(C)} is a decomposition of the identity. This is where
the name “spectral resolution” comes from.

Proof of Theorem 11.13. Given Remark 11.14, the only part to prove is
the uniqueness, and that follows from the uniqueness of the measure µx,y.

Proposition 11.16 Suppose A1, . . . , Am are pairwise disjoint. Then∥∥∥ m∑
i=1

ciE(Ai)
∥∥∥ = max

1≤i≤m
|ci|.
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Proof. By letting Am+1 = σ(A) \ ∪mi=1Ai and setting cm+1 = 0, we may
suppose without loss of generality that the union of the Ai is σ(A). Let
r = maxi |ci|. Given x, let xi = E(Ai)x. Then

〈xi, xj〉 = 〈E(Ai)x,E(Aj)x〉 = 〈x,E(Ai)E(Aj)x〉 = 0

if i 6= j. We have∥∥∥∑
i

ciE(Ai)x
∥∥∥2 =

〈∑
i

ciE(Ai)x,
∑
j

cjE(Aj)x
〉

=
〈∑

i

cixi,
∑
j

cjxj

〉
=
∑
i

|ci|2‖xi‖2 ≤ r2
∑
i

‖xi‖2 ≤ r2‖x‖2.

Therefore the operator norm is less than or equal to r. If j is such that
|cj| = r, then take x in the range of E(Aj), and then

∑
i ciE(Ai)x = cjx,

which implies that the norm is equal to r.

Suppose χB(A) is defined for every Borel measurable subset B of σ(A).
If f is simple, i.e., f =

∑
ciχAi , where the Ai are disjoint, we could define

f(A) =
∑
ciE(Ai). By the previous proposition, we know

‖f(A)‖ = sup
λ∈σ(A)

|f(λ)|

if f is simple. If f is bounded and measurable, we can take fn simple con-
verging to f uniformly. Then

‖fn(A)− fm(A)‖ = sup
λ∈σ(A)

|fn − fm|,

since fn−fm is simple, and therefore fn(A) is a Cauchy sequence. We define
f(A) to be the limit of fn(A). This allows us to define f(A) for f bounded
and Borel measurable provided we know how to define χC(A).

Proposition 11.17

‖f(A)x‖2 =

∫
|f(λ)|2mx,x(dλ).

Proof. If f is bounded and measurable

‖f(A)x‖2 = 〈f(A)x, f(A)x〉 = 〈|f |2(A)x, x〉 =

∫
|f 2(λ)|mx,x(dλ).
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11.5 Normal operators

We need a simple lemma.

Lemma 11.18 If U is a bounded linear operator on H, then ‖U∗U‖ = ‖U‖2.

Proof. On the one hand

‖U∗U‖ ≤ ‖U∗‖ ‖U‖,

and we saw at the beginning of this chapter that ‖U∗‖ = ‖U‖.
On the other hand,

‖Ux‖2 = 〈Ux, Ux〉 = 〈U∗Ux, x〉 ≤ ‖U∗U‖ ‖x‖2.

Taking the sup over ‖x‖ = 1, we get our result.

Let F be a Banach algebra with unit.

Proposition 11.19 If Q ∈ F , then

σ(Q) = {p(Q) : p a homomorphism of F into C}.

Proof. λ ∈ σ(Q) if and only if λI − Q is not invertible, which happens if
and only if p(λI − Q) = 0 for some homomorphism p. Since p(I) = 1, this
happens if and only if λ = p(Q) for some p.

Proposition 11.20 If p is a homomorphism, then p(T ∗) = p(T ).

Proof. Let A = (T + T ∗)/2 and B = (T − T ∗)/2. Then A∗ = A, B∗ = −B,
T = A + B, T ∗ = A − B, and so p(T ) = p(A) + p(B) and similarly with T
replaced by T ∗.

It will suffice to show p(A) is real and p(B) is imaginary, for then we have

p(T ∗) = p(A)− p(B), p(T ) = p(A) + p(B),
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and these two are complex conjugates of each other.

Write p(A) = a+ ib and let U = A+ itI, so that U∗ = A− itI. Then

U∗U = A2 + t2I.

We have p(U) = a+i(b+t), so |p(U)|2 = a2+(b+t)2. We know from Chapter
9 that homomorphisms are contractions, so |p(U)| ≤ ‖U‖, and hence

a2 + (b+ t)2 = |p(U)|2 ≤ ‖U‖2 = ‖U∗U‖ ≤ ‖A‖2 + t2

for all t, which can only happen if b = 0. (If b > 0, take t large positive, and
t large negative if b < 0.) The operator iB is symmetric, so apply the above
to iB.

An alternate proof that p(A) is real is that since A is symmetric, its
spectrum is contained in the real line and we know p(A) ∈ σ(A).

Proposition 11.21 If T and T ∗ commute, then ‖T‖ = r(T ).

Proof. We already know this if T is symmetric. Note T ∗T is always sym-
metric.

For general T ,

‖T‖2 = ‖T ∗T‖ = r(T ∗T ) = sup
λ∈σ(T ∗T )

|λ|

= sup
p∈F
|p(T ∗T )| = sup

p∈F
|p(T )|2

=
(

sup
p∈F
|p(T )|

)2
=
(

sup
λ∈σ(T )

|λ|
)2

= (r(T ))2.

An operator N is normal if N∗N = NN∗.

We will see that there is a spectral resolution for the identity as for sym-
metric operators, but now the spectrum is not necessarily real. In the case
of matrices, normal matrices are diagonalizable, but the eigenvalues can be
complex.
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Lemma 11.22 Let R(x, y) be a polynomial, N normal, and Q = R(N,N∗).
Then

σ(Q) = {R(λ, λ) : λ ∈ σ(N)}.

Proof. Operators of the form R(N,N∗) are a commutative algebra with
unit. Let F be the closure in the operator norm.

Since N and N∗ commute, they each commute with Q, and so Q and Q∗

commute. Now p(Q) = R(p(N), p(N∗)) = R(p(N), p(N)). Then σ(Q) is
equal to the set of points R(p(N), p(N)) where p is a homomorphism, which
is the same as the set of R(λ, λ) where λ ∈ σ(N).

Theorem 11.23 Let N be normal. There exists an orthogonal projection
valued measure E on σ(N) such that I =

∫
σ(N)

dE and N =
∫
σ(N)

λE(dλ).

Proof. Let q(x, y) be a polynomial in x and y. If we let w = x + yi ∈ C,
we can let x = (w + w)/2, y = (w − w)/2, and write q(x, y) = R(w,w)
for some polynomial R. Set Q = R(N,N∗). By the above lemma we have
σ(Q) = R(λ, λ) for λ ∈ σ(N). We have ‖Q‖ = r(Q), since Q and Q∗

commute. Therefore
‖Q‖ = sup

λ∈σ(N)

|R(λ, λ)|.

Also, R(λ, λ) = q(1
2
(λ+ λ), 1

2
(λ− λ)). Now we can define f(N) as the limit

of polynomials, and the rest of the proof is as before.

11.6 Unitary operators

U is a unitary operator if it is linear, isometric, one-to-one, and onto. (Cf. ro-
tations) So ‖Ux‖ = ‖x‖, or 〈Ux, Ux〉 = 〈x, x〉. By polarization, 〈Ux, Uy〉 =
〈x, y〉, so 〈x, U∗Uy〉 = 〈x, y〉, which implies U∗U = I. U is invertible, since
it is one-to-one and onto, and thus U−1 = U∗.

U∗U = I = UU∗, so unitary operators are also normal operators.

Proposition 11.24 If U is unitary, then σ(U) ⊂ {|z| = 1}.
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Proof. (λI−U) = λ(I−U/λ). Since U is an isometry, then ‖U‖ = 1. Then
I − 1

λ
U is invertible if 1

|λ|‖U‖ < 1, or if |λ| > 1.

Now suppose |λ| < 1. (λI − U) = U(λU−1 − I) = U(λU∗ − I). Since
‖λU∗‖ = |λ| < 1, then I − λU∗ is invertible.

Proposition 11.25 Suppose T is a bounded normal operator.
(1) If σ(T ) ⊂ R, then T is symmetric.
(2) If σ(T ) ⊂ {|z| = 1}, then T is unitary.

Proof. (1) Let q(λ, λ) = λ− λ. Then

T − T ∗ = q(T, T ∗),

and
‖T − T ∗‖ = sup

λ∈σ(T )
q(λ, λ) = 0

since λ = λ if λ is real.

(2) Let q(λ, λ) = λλ− 1. Then

T ∗T − I = q(T, T ∗),

and
‖T ∗T − I‖ = sup

λ∈σ(T )
q(λ, λ) ≤ sup

|λ|=1

(|λ|2 − 1) = 0.



Chapter 12

Unbounded operators

12.1 Definitions

Let D be a subspace of a Hilbert space H. In this chapter D will almost
never be closed. An unbounded operator T in H with domain D is a linear
mapping from D into H. We will write D(T ) for the domain of T . T is
densely defined if D(T ) is dense in H.

For an example, let H = L2[0, 1], let D = C1[0, 1], and let Tf = f ′. Note
T is not a bounded operator. For another example, let D = {f ∈ C2 : f(0) =
f(1) = 0} and Uf = f ′′. Then one can show that {−n2π2} are eigenvalues.

Recall that G(T ), the graph of T , is the set {(x, Tx) : x ∈ D(T )}. If
U is an extension of T , that means that D(T ) ⊂ D(U) and Ux = Tx if
x ∈ D(T ). Note U will be an extension of T if and only if G(T ) ⊂ G(U).
One often writes T ⊂ U to mean that U is an extension of T .

A closed operator in H is one whose graph is a closed subspace of H ×H.
This is equivalent to saying that whenever xn → x and Txn → y, then
x ∈ D(T ) and y = Tx.

Proposition 12.1 If D(T ) = H and T is closed, then T is a bounded oper-
ator.

Proof. Recall the closed graph theorem, which says that if M is a closed

147
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linear map from a Banach space to itself, thenM is bounded. The proposition
follows immediately from this.

Given a densely defined operator T , we want to define its adjoint T ∗.
First we define D(T ∗) to be the set of y ∈ H such that the linear functional
`(x) = 〈Tx, y〉 is continuous (i.e., bounded) on D(T ). If y ∈ D(T ∗), the
Hahn-Banach theorem allows us to extend ` to a bounded linear functional
on H. By the Riesz representation theorem for Hilbert spaces, there exists
zy ∈ H such that

`(x) = 〈x, zy〉, x ∈ D(T ).

Of course zy depends on y. We then define T ∗y = zy.

Since T is densely defined, it is routine to check that T ∗ is well defined
and also that T ∗ is an operator in H, that is, D(T ∗) is a subspace of H and
T ∗ is linear.

For an example, let H = L2[0, 1], D(T ) = {f ∈ C1 : f(0) = f(1) = 0},
and Tf = f ′. If f ∈ D(T ) and g ∈ C1, then

〈Tf, g〉 =

∫ 1

0

f ′(x)g(x) dx = f(1)g(1)−f(0)g(0)−
∫ 1

0

f(x)g′(x) dx = 〈f,−g′〉

by integration by parts. Thus |〈Tf, g〉| ≤ ‖f‖ ‖g′‖ is a bounded linear func-
tional, and we see that C1 ⊂ D(T ∗) and T ∗g = −g′ if g ∈ C1.

Some care is needed for the sum and composition of unbounded operators.
We define

D(S + T ) = D(S) ∩D(T )

and

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}.

Proposition 12.2 If S, T , and ST are densely defined operators in H, then

T ∗S∗ ⊂ (ST )∗. (12.1)

If in addition S is bounded, then

T ∗S∗ = (ST )∗.
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Proof. Suppose x ∈ D(ST ) and y ∈ D(T ∗S∗). Since x ∈ D(T ) and
S∗y ∈ D(T ∗), then

〈Tx, S∗y〉 = 〈x, T ∗S∗y〉.

Since Tx ∈ D(S) and y ∈ D(S∗), then

〈STx, y〉 = 〈Tx, S∗y〉.

Therefore
〈STx, y〉 = 〈x, T ∗S∗y〉.

Assume now that S is bounded and y ∈ D((ST )∗). Then S∗ is also
bounded and D(S∗) is therefore equal to H. Hence

〈Tx, S∗y〉 = 〈STx, y〉 = 〈x, (ST )∗y〉

for every x ∈ D(ST ). Thus S∗y ∈ D(T ∗), and so y ∈ D(T ∗S∗). Now combine
with (12.1).

An operator T in H is symmetric if 〈Tx, y〉 = 〈x, Ty〉 whenever x, y are
both in D(T ). Thus a densely defined symmetric operator T is one such that
T ⊂ T ∗. If T = T ∗, we say T is self-adjoint. Note that the domains of T
and T ∗ are crucial here. This is not an issue with bounded operators because
every symmetric bounded operator is self-adjoint.

Let us look at some examples. These will all be the same operator, but
with different domains. Let H = L2[0, 1]. Let D(S) be the set of absolutely
continuous functions f on [0, 1] such that f ′ ∈ L2. Let D(T ) be the set of
f ∈ D(S) such that in addition f(0) = f(1), and let D(U) be the set of
functions in D(S) such that f(0) = f(1) = 0. Note that if f ′ ∈ L2, then

|f(t)− f(s)| =
∣∣∣ ∫ t

s

f ′(x) dx
∣∣∣ ≤ ‖f ′‖L2|t− s|1/2

by Cauchy-Schwarz, so functions in any of these domains can be well defined
at points.

The operator will be the same in each case: Sf = if ′, and the same for Tf
and Uf provided f is in the appropriate domain. We see that U ⊂ T ⊂ S.
We will show that T is self-adjoint, U is symmetric but not self-adjoint, and
S is not symmetric.
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By integration by parts,

〈Tf, g〉 =

∫ 1

0

(if ′)g (12.2)

= if(1)g(1)− if(0)g(0)−
∫ 1

0

if(g)′

= if(1)g(1)− if(0)g(0) +

∫ 1

0

f(ig′).

Thus if f, g ∈ D(T ), we have 〈Tf, g〉 = 〈f, Tg〉, since f(1) = f(0) and
g(1) = g(0) for f, g ∈ D(T ).

The same calculation with T replaced by S shows that S is not symmetric.
The calculation with T replaced by U shows that U is symmetric. Moreover
(12.2) shows that U ⊂ S∗.

Suppose g ∈ D(T ∗) and φ = T ∗g. Let Φ(x) =
∫ x
0
φ(y) dy. If f ∈ D(T ),

then ∫ 1

0

if ′g = 〈Tf, g〉 = 〈f, φ〉 = f(1)Φ(1)−
∫ 1

0

f ′Φ,

the last equality by integration by parts. Since D(T ) contains non-zero con-
stants, take f identically equal to 1 to conclude that Φ(1) = 0. Therefore we
have ∫ 1

0

f ′G = 0

whenever f ∈ D(T ) and

G = ig − Φ.

Taking the complex conjugate and replacing f by f ,∫ 1

0

f ′G = 0

if f ∈ D(T ).

We claim G is constant (a.e.). Suppose a < b is such that [a, a+h], [b, b+h]
are both subsets of [0, 1] and take f such that

f ′ =
1

h
χ[a,a+h] −

1

h
χ[b,b+h].
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Then f ∈ D(T ) and so

1

h

∫ a+h

a

G(x) dx− 1

h

∫ b+h

b

G(x) dx = 0.

There is a set N of Lebesgue measure 0 such that if y /∈ N , then

1

h

∫ y+h

y

G(x) dx→ G(y).

So if a, b /∈ N , taking the limit shows G(a) = G(b). Since we are on L2, we
can modify G on a set of Lebesgue measure 0 and take G constant.

This implies that g = −iΦ+c is absolutely continuous and g′ = −iφ ∈ L2.
Also, g(0) = −iΦ(0) + c = −iΦ(1) + c, hence g ∈ D(T ). Thus T ∗ ⊂ T .

In the case of U : if g ∈ D(U∗) and f ∈ D(U), then f(1) = 0 and so∫ 1

0

if ′g = f(1)Φ(1)−
∫ 1

0

f ′Φ = −
∫ 1

0

f ′Φ.

If G = ig − Φ, then
∫ 1

0
f ′G = 0. As before G is constant, so g = −iΦ + c,

but now we no longer know that Φ(1) = 0. So g(1) might not equal g(0).
Therefore U∗ ⊂ S.

If g ∈ D(S) and f ∈ D(U), we have

〈Uf, g〉 = if(1)g(1)− if(0)g(0) +

∫ 1

0

f(ig′) = 〈f, Ug〉.

Hence g ∈ D(U∗). Thus S ⊂ U∗, and with the above U∗ = S. Hence U is
not self-adjoint.

Proposition 12.3 Let H be a Hilbert space over C, A self-adjoint. Then A
is closed.

Proof. A is closed: if xn → x and Axn → u, then

〈Axn, y〉 = 〈xn, Ay〉 → 〈x,Ay〉 = 〈Ax, y〉.

Also 〈Axn, y〉 → 〈u, y〉. This is true for all y, so Ax = u.



152 CHAPTER 12. UNBOUNDED OPERATORS

If A is defined on all of H and is self-adjoint, we conclude that A is
bounded.

We say z is in the resolvent set of A if A− zI maps D one-to-one onto H.

Proposition 12.4 If z is not real, then z is in the resolvent set. Equiva-
lently, σ(A) ⊂ R.

Proof. (1) R = Range (A− zI) is a closed subspace.

R is equal to the set of all vectors u of the form Av − zv = u for some
v ∈ D. Then〈Av, v〉 − z〈v, v〉 = 〈u, v〉. A is self-adjoint, so 〈Av, v〉 =
〈v,Av〉 = 〈Av, v〉 is real. Looking at the imaginary parts,

−Im (z‖v‖2) = Im 〈u, v〉,

so |Im z|‖v‖2 ≤ ‖u‖ ‖v‖, or

‖v‖ ≤ 1

|Im z|
‖u‖.

If un ∈ R and un → u, then ‖vn − vm‖ ≤ (1/|Im z|)‖un − um‖, so vn is a
Cauchy sequence, and hence converges to some point v.

Since Avn − zvn = un → u and zvn converges to zv, then Avn converges
to u + zv. Since A is self-adjoint, it is closed, and so v ∈ D(A). Since
〈Avn, w〉 = 〈vn, Aw〉 for w ∈ D, then 〈u+ zv, w〉 = 〈v,Aw〉, which implies
and Av = u+ zv, or u = (A− z)v ∈ R.

(2) R = H. If not, there exists x 6= 0 such that x is orthogonal to R, and
then

〈Av − zv, x〉 = 〈Av, x〉 − 〈v, zx〉 = 0

for all v ∈ D. Then 〈Av, x〉 = 〈v, zx〉, so x ∈ D and Ax = zx. But then
〈x,Ax〉 = z〈x, x〉 is not real, a contradiction.

(3) A−zI is one-to-one. If not, there exists x ∈ D such that (A−zI)x = 0.
But then ‖x‖ ≤ (1/|Im z|)‖0‖ = 0, or x = 0.

If we set R(z) = (A− zI)−1 the resolvent, we have

‖R(z)‖ ≤ 1

|Im z|
.
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If u,w ∈ H and v = R(z)u, then (A− z)v = u, and

〈u,R(z)w〉 = 〈(A− z)v,R(z)w〉 = 〈v, ((A− z)R(z)w〉
= 〈v, w〉 = 〈R(z)u,w〉.

So the adjoint of R(z) is R(z).

Theorem 12.5 Let A be a symmetric operator. A is self-adjoint if and only
if σ(A) ⊂ R.

Proof. That A self-adjoint implies that all non-real z are in the resolvent
set has already been proved. We thus have to show that if A is symmetric
and σ(A) ⊂ R, then A is self-adjoint.

If x, y ∈ D(A),
〈(A− z)x, y〉 = 〈x, (A− z)y〉.

If z is not real, then z /∈ σ(A), so z−A is invertible and A−z and A−z map
D(A) one-to-one and onto H. For f, g ∈ H, we can define x = (A − z)−1f
and y ∈ (A− z)g, and we note that x and y are both in D(A). We then have

〈f, (A− z)−1g〉 = 〈(A− z)−1f, g〉

for all f, g ∈ H.

Now we show A is self-adjoint. Take z non-real and suppose v ∈ D(A∗).
Set w = A∗v ∈ H. We have

〈Ax, v〉 = 〈x,A∗v〉

for all x ∈ D(A). Subtract z〈x, v〉 from both sides:

〈(A− z)x, v〉 = 〈x, (A∗ − z)v〉.

Let g = (A∗ − z)v and f = (A− z)x. Then

〈f, v〉 = 〈(A− z)x, v〉 = 〈x, (A∗ − z)v〉
= 〈(A− z)−1f, g〉 = 〈f, (A− z)−1g〉.

The set of f of the form (A − z)x for x ∈ D(A) is all of H, hence v =
(A − z)−1g, which is in D(A). In particular, D(A∗) ⊂ D(A). We have
(A− z)v = g = (A∗ − z)v, so A∗v = Av.
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12.2 Cayley transform

Define
U = (A− i)(A+ i)−1.

This is the image of the operator A under the function

F (z) =
z − i
z + i

, (12.3)

which maps the real line to ∂B(0, 1)\{1}, and is called the Cayley transform
of A.

Proposition 12.6 U is a unitary operator.

Proof. A + i and A − i each map D(A) one-to-one onto H, so U maps H
onto itself.

U is norm preserving: Let u ∈ H, v = (A+i)−1u, w = Uu. So (A+i)v = u,
(A− i)v = w. We need to show ‖u‖ = ‖w‖.

We have

‖u‖2 = 〈(A+ i)v, (A+ i)v〉 = ‖Av‖2 + ‖v‖2 + i〈v, Av〉 − i〈Av, v〉
= ‖Av‖2 + ‖v‖2,

and similarly

‖w‖ = 〈(A− i)v, (A− i)v〉 = ‖Av‖2 + ‖v‖2.

Proposition 12.7 Given A and U as above and E the spectral resolution
for U , E({1}) = 0.

Proof. Write E1 for E({1}). If E1 6= 0, there exists z 6= 0 in the range of
E1, so z = E1w. Then

Uz =

∫
σ(U)

λE(dλ)z =

∫
σ(U)

λ (E − E1)(dλ)z +

∫
{1}
λE1(dλ)z.
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The first integral is zero since (E − E1)(A) and E1 are orthogonal for all A.
The second integral is equal to

E1z = E1E1w = E1w = z

since E1 is a projection.

We conclude z is an eigenvector for U with eigenvalue 1. So

(A− iI)(A+ iI)−1z = z.

Let v = (A+ iI)−1z, or z = (A+ iI)v. Then

z = (A− iI)(A+ iI)−1z = (A− iI)v,

and then iv = −iv, so v = 0, and hence z = 0, a contradiction.

12.3 Spectral theorem

When M is a bounded symmetric operator and f is bounded and measurable,
we defined f(M) in Chapter 11. We now want to define f(M) for some
unbounded functions f .

Proposition 12.8 Let M be a bounded operator and f a measurable func-
tion. Let

Df =
{
x :

∫
σ(M)

|f(λ)|2 µx,x(dλ) <∞
}
.

Then

(1) Df is a dense subspace of H.

(2) If x, y ∈ H,∫
σ(M)

|f(λ)| |µx,y|(dλ) ≤ ‖y‖
(∫

σ(M)

|f(λ)|2 µx,x(dλ)
)1/2

.

(3) If f is bounded and v = f(M)z, then

µx,v(dλ) = f(λ)µx,z(dλ), x, z ∈ H.
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Proof. (1) Let S ⊂ σ(M) and z = x+ y.

‖E(S)z‖2 ≤ (‖E(S)x‖+ ‖E(S)y‖)2 ≤ 2‖E(S)x‖2 + 2‖E(S)y‖2.

So
µz,z(S) ≤ 2µx,x(S) + 2µy,y(S).

This is true for all S, so

µz,z(dλ) ≤ 2µx,x(dλ) + 2µy,y(dλ).

This proves that Df is a subspace.

Let Sn = {λ ∈ σ(M) : |f(λ)| < n}. Then if x = E(Sn)z,

E(S)x = E(S)E(Sn)E(Sn)z = E(S ∩ Sn)E(Sn)z = E(S ∩ Sn)x,

so µx,x(S) = µx,x(S ∩ Sn). Then∫
σ(M)

|f(λ)|2 µx,x(dλ) =

∫
Sn

|f(λ)|2 µx,x(dλ) ≤ n2‖x‖2 <∞.

To see this last line, we know it holds when |f |2 is replaced by g and g is
the characteristic function of a set. It holds for g simple by linearity, and
then it holds for g = |f |2 by monotone convergence. Therefore the range of
E(Sn) ⊂ D(f). σ(M) = ∪nSn, so

‖E(Sn)y−y‖2 = ‖E(Sn)(y)−E(σ(M))(y)‖2 =

∫
|χσ(M)\Sn(λ)|2 µy,y(dλ)→ 0

by dominated convergence. Hence y is in the closure of Df .

(2) If x, y ∈ H, f bounded,

f(λ)µx,y(dλ)� |f(λ)| |µx,y|(dλ),

so there exists u with |u| = 1 such that

u(λ)f(λ)µx,y(dλ) = |f(λ)| |µx,y|(dλ).

Hence ∫
σ(M)

|f(λ)| |µx,y|(dλ) = (uf(M)x, y) ≤ ‖uf(M)x‖ ‖y‖.
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But

‖uf(M)x‖2 =

∫
|uf |2 dµx,x =

∫
|f |2 dµx,x.

So (2) holds for bounded f . Now take a limit and use monotone convergence.

(3) Let g be continuous.∫
σ(M)

g dµx,v = (g(M)x, v) = (g(M)x, f(M)z)

= ((fg)(M)x, z) =

∫
gf dµx,z.

this is true for all g continuous, so dµx,x = f dµx,z.

Theorem 12.9 Let E be a resolution of the identity.

(1) Suppose f : σ(M) → C is measurable. There exists a densely defined
operator f(M) with domain Df and

〈f(M)x, y〉 =

∫
σ(M)

f(λ)µx,y(dλ) (12.4)

‖f(M)x‖ =

∫
σ(M)

|f(λ)|2 µx,x(dλ). (12.5)

(2) If Dfg ⊂ Dg, then f(M)g(M) = (fg)(M).

(3) f(M)∗ = f(M) and f(M)f(M)∗ = f(M)∗f(M) = |f |2(M).

Proof. (1) If x ∈ Df , then `(y) =
∫
σ(M)

f dµx,y is a bounded linear func-

tional with norm at most (
∫
|f |2 dµx,x)1/2 by (2) of the preceding proposition.

Choose f(M)x ∈ H to satisfy (1) for all y.

Let fn = fχ(|f |≤n). Then Df−fn = Df since
∫
|f − fn|2 dµx,x is finite if

and only if
∫
|f |2 dµx,x is finite, using that fn is bounded. By the dominated

convergence theorem,

‖f(M)x− fn(M)x‖2 ≤
∫
σ(M)

|f − fn|2 dµx,x → 0.
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Since fn is bounded, (12.5) holds with fn. Now let n→∞.

(2): Define gm = gχ(|g|≤m). Since fn and gm are bounded, (2) follows for
fn, gm. Now let m→∞ and then n→∞.

(3) We know this holds for fn since fn is bounded. Now let n→∞.

Theorem 12.10 (Change of measure principle) Let E be a resolution of
the identity on A, Φ : A → B one-to-one and bimeasurable. Let E ′(S ′) =
E(Φ−1(S ′)). Then E ′ is a resolution of the identity on B, and∫

B

f dµ′x,y =

∫
B

(f ◦ Φ) dµx,y.

Bimeasurable means that Φ and Φ−1 are both measurable. Saying that E
is a resolution of the identity on A means that E(C) is symmetric for every
measurable subset C of A, ‖E(C)‖ ≤ 1, E(∅) = 0, E(A) = I, E(C ∪D) =
E(C) +E(D) if C and D are disjoint, and E(C ∩D) = E(C)E(D). Finally,
〈E(C)x, y〉 =

∫
χC(z)µx,y(dz) characterizes the measure µx,y and similarly

for µ′x,y.

Proof. Prove for f the indicator of a set, use linearity, and take limits.

Theorem 12.11 (Spectral theorem) Let A be a self-adjoint operator on a
Hilbert space over the complex numbers. There exists a resolution of the
identity E such that

A =

∫
σ(A)

z E(dz).

Proof. Start with the unbounded operator A. Let U = (A− iI)(A+ iI)−1.
Then U is unitary with a spectrum on ∂B(0, 1) \ {1}. Let the resolution of

the identity for U be given by Ẽ.

Let F be defined as in (12.3) and define Φ = F−1, which is a map taking
∂B(0, 1) \ {1} to R. Thus

Φ(z) =
i(1 + z)

1− z
.
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We check that A = Φ(U). Since the range of Φ is R, then Φ(U) is self-
adjoint by Theorem 12.9(3). Since Φ(z)(1− z) = i(1 + z), Theorem 12.9(2)
implies that

Φ(U)(I − U) = i(I + U).

In particular, the range of I − U is contained in the domain of Φ(U). From
the definition of the Cayley transform, we have

A(I − U) = i(I + U)

and the domain of A is equal to the range of I − U . Thus A ⊂ Φ(U). Since
both A and Φ(U) are self-adjoint,

Φ(U) = Φ(U)∗ ⊂ A∗ = A ⊂ Φ(U),

and hence A = Φ(U).

Let E(S) = Ẽ(Φ−1(S)). We have

〈Ax, y〉 = 〈Φ(U)x, y〉 =

∫
σ(U)

Φ(z) 〈Ẽ(dz)x, y〉.

By the change of measure principle, this is equal to∫
σ(A)

z 〈E(dz)x, y〉.
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Chapter 13

Semigroups

13.1 Strongly continuous semigroups

Let X be a Banach space over the complex numbers, T (t) = Tt linear
bounded operators for t ≥ 0. T is a semigroup if Tt+s = TtTs, T0 = I.

These come up in PDE and in probability. For example, if one wants to
solve the equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), u(0, x) = f(x),

where f is a given function (this is the heat equation on R), the solution is
given by u(t, x) = Ttf(x) for a certain semigroup Tt.

If Xt is a Markov process, then Ttf(x) = E xf(Xt) will be a semigroup,
where E x means expectation starting at x.

Here is an example: if X is a Hilbert space and {ϕn} is an orthonormal
basis and λj a sequence of real numbers increasing to infinity, let

Ttf =
∞∑
j=1

e−λjt〈f, ϕj〉ϕj.

Another example is to let

Ttf(x) =

∫
f(y)

1√
2πt

e−(x−y)
2/2t dy (13.1)

161
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where X is the set of continuous functions on R vanishing at infinity.

A third example is given by the next proposition.

Proposition 13.1 Let A : X → X be bounded. Then Tt = etA (defined as
etA =

∑
tnAn/n!) is a semigroup that is continuous in the norm topology.

Proof. This follows easily from the functional calculus for operators.

We say Tt is strongly continuous at t = 0 if ‖Ttx − x‖ → 0 as t → 0 for
all x ∈ X.

Proposition 13.2 Suppose Tt is a strongly continuous semigroup at 0.

(1) There exists b and k such that ‖Tt‖ ≤ bekt.

(2) Ttx is strongly continuous in t for all x ∈ X.

Proof. We claim ‖Tt‖ is bounded near 0. If not, there exists tj → 0 such that
‖Ttj‖ → ∞. By the uniform boundedness principle, Ttjx cannot converge to
x for all x, a contradiction to strong continuity. So there exists a, b such that
‖Tt‖ ≤ b for t ≤ a.

Write t = na+ r. Tt = T na Tr, so

‖Tt‖ ≤ ‖Ta‖n‖Tr‖ ≤ bn+1 ≤ bekt

with k = 1
a

log b.

(2) Ttx− Tsx = Ts[Tt−sx− x], so

‖Ttx− Tsx‖ ≤ ‖Ts‖ ‖Tt−sx− x‖ → 0.

Suppose D is dense in X and A : D → X is closed. z ∈ ρ(A), the resolvent
set, if z−A maps D = D(A) one-to-one onto X. Thus ρ(A) = σ(A)c. Write
R(z) = Rz = (zI − A)−1.
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Since A is closed, then Rz is closed. To see this, suppose xn → x and
yn = Rzxn → y. Then

Ayn = zyn − (z − A)yn = zyn − xn → zy − x.

Since A is closed, y ∈ D(A) and Ay = zy − x, or (z −A)y = x. So y = Rzx,
which proves Rz is closed.

Rz is defined on all of X, so by the closed graph theorem, Rz is a bounded
operator.

Let T be a strongly continuous one parameter semigroup. The infinitesi-
mal generator A is defined by

Ax = lim
h→0

Thx− x
h

,

where we mean that the difference of the two sides goes to 0 in norm. The
domain of A consists of those x for which the strong limit exists.

As an example, with Tt defined by (13.1), if f ∈ C2 vanishes at infinity,
then using Taylor’s theorem,

Thf(x)− f(x)

h
=

1

h

∫
[f(y)− f(x)]

1√
2πh

e−(y−x)
2/2h dy

+ f ′(x)

∫
(y − x)

1√
2πh

e−(y−x)
2/2h dy

+ 1
2
f ′′(x)

∫
(y − x)2

1√
2πh

e−(y−x)
2/2h dy

+

∫
E(h)

1√
2πh

e−(y−x)
2/2h dy

= 1
2
f ′′(x) + E(h)/h→ 1

2
f ′′(x),

where E(h) is a remainder term that goes to 0 faster than h; we used standard
facts about the Gaussian density. One can improve the above to show that
the convergence is uniform, and we can then conclude that C2 ⊂ D(A) and
Af = 1

2
f ′′.

Proposition 13.3 (1) A commutes with Tt in the sense that if x ∈ D(A),
then Ttx ∈ D(A) and ATtx = TtAx.
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(2) D(A) is dense in X.

(3) D(An) is dense.

(4) A is closed.

(5) If ‖Tt‖ ≤ bekt and Re z > k, then z ∈ ρ(A). The resolvent of A is the
Laplace transform of Tt.

Proof. (1)
Tt+h − Tt

h
x = Tt

Th − I
h

x =
Th − I
h

Ttx.

If x ∈ D(A), the middle term converges to TtAx. So the limit exists in the
third term, and therefore Ttx ∈ D(A). Moreover d

dt
Ttx = TtAx = ATtx.

(2) We claim

Ttx− x = A

∫ t

0

Tsx ds.

To see this, Tsx is a continuous function of s. Using a Riemann sum approx-
imation,

Th − I
h

∫ t

0

Tsx ds =
1

h

∫ t

0

[Ts+hx− Tsx] ds

=
1

h

∫ t+h

t

Tsx ds−
1

h

∫ h

0

Tsx ds

→ Ttx− x.

So
∫ t
0
Tsx ds ∈ D(A). But 1

t

∫ t
0
Tsx ds→ x.

(3) Let φ be C∞ and supported in (0, 1). Let

xφ =

∫ 1

0

φ(s)Tsx ds.

Then

Axφ =

∫ 1

0

φ(s)ATsx ds =

∫ 1

0

φ(s)
∂

∂s
Tsx ds = −

∫ 1

0

φ′(s)Tsx ds

by integration by parts. Repeating, xφ ∈ D(An). Now take φj approximating
the identity.
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(4) Ttx − x =
∫ t
0
TsAxds: To see this, both are 0 at 0. The derivative

on the left is TtAx, which is the same as the derivative on the right. Let
xn ∈ D(A), xn → x, Axn → y. Then

Ttxn − xn =

∫ t

0

TsAxn ds→
∫ t

0

Tsy ds.

The left hand term converges to Ttx − x. Divide by t and let t → 0. The
right hand side converges to y. Therefore x ∈ D(A) and Ax = y.

(5) Let

L(z)x =

∫ ∞
0

e−zsTsx ds.

The Riemann integral converges when Re z > k.

‖L(z)x‖ ≤
∫ ∞
0

be(k−Re z)s‖x‖ ds ≤ b

Re z − k
‖x‖.

We claim L(z) = Rz. Check that e−ztTt is also a semigroup with infinitesimal
generator A− zI.

Hence

e−ztTt − x = (A− zI)

∫ t

0

e−zsTsx ds.

As t → ∞, the left hand side tends to −x and the right hand side tends to
(A − zI)L(z)x. Since A is closed, x = (zI − A)L(z)x. So L(z) is the right
inverse of (zI − A). Similarly, we see that it is also the left inverse.

13.2 Generation of semigroups

Proposition 13.4 A strongly continuous semigroup of operators is uniquely
defined by its infinitesimal generator.

Proof. If S, T have the same generator, let x ∈ D(A) and

d

dt
StTs−tx = S(t)ATs−tx− StATs−tx = 0.
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Therefore

0 =

∫ s

0

d

dr
SrTs−rx dr = SsT0x− S0Tsx,

or Ssx = Tsx. Now use the fact that D(A) is dense.

Tt is a contraction if ‖Tt‖ ≤ 1 for all t.

Proposition 13.5 The infinitesimal generator of a strongly continuous
semigroup of contractions has (0,∞) ⊂ ρ(A) and

‖Rλ‖ = ‖(λI − A)−1‖ ≤ 1

λ
. (13.2)

Proof. We already did this: this is the case b = 1, k = 0. We have

‖L(z)x‖ ≤ 1

|Re z − k|
‖x‖.

Proposition 13.6 Suppose B is an extension of A and there exists λ ∈
ρ(A) ∩ ρ(B). Then A = B.

Proof. Suppose x ∈ D(B) \D(A). We know (λ−B)x ∈ X, so

(λ− A)−1(λ−B)x ∈ D(A) ⊂ D(B).

Then

(λ−B)(λ− A)−1(λ−B)x = (λ− A)(λ− A)−1(λ−B)x = (λ−B)x.

Hit both sides with (λ−B)−1 to obtain (λ−A)−1(λ−B)x = x. So x ∈ D(A),
a contradiction.

Theorem 13.7 (Hille-Yosida theorem) Let A be a densely defined unbound-
ed operator such that (0,∞) ⊂ ρ(A) and

‖Rλ‖ = ‖(λI − A)−1‖ ≤ 1

λ
. (13.3)

Then A is the infinitesimal generator of a strongly continuous semigroup of
contractions.
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Note that saying (0,∞) ⊂ ρ(A) implies that λ−A is one-to-one and onto
from the domain of A to the Banach space, which means the range of λ−A
is all of the Banach space.

Proof. Note nRn− I = RnA since Rn(nI −A) = I. Let An = nARn. Then
An = n2Rn − nI, so An is a bounded operator. Define Tn(t) = etAn .

Step 1. We show nRnx→ x for all x.

To prove this,

‖nRnx− x‖ = ‖RnA(x)‖ ≤ 1

n
‖Ax‖,

so the claim is true for x ∈ D(A). Since ‖nRn‖ ≤ 1 and D(A) is dense in X,
this proves the claim.

Step 2. We show that if x ∈ D(A), then An(x)→ A(x):

Anx = nARnx = nRnAx→ Ax.

Step 3. We show that Tn(s)x converges for all x.

We have

Tn(t) = etAn = e−nten
2Rnt = e−nt

∑ (n2t)m

m!
(Rn)m,

so ‖Tn(t)‖ ≤ entent = 1.

An and Am commute with Tn and Tm.

d

dt
Tn(s− t)Tm(t)x = Tn(s− t)Tm(t)[Am − An]x.

The norm of the right hand side is bounded by ‖Anx− Amx‖. So

‖Tn(s)x− Tm(s)x‖ ≤ s‖Anx− Amx‖ → 0

as n,m→∞. Therefore Tn(s)x converges, say, to Tsx, uniformly in s. D(A)
is dense so this holds for all x.

Tn(s) is a strongly continuous semigroup of contractions, so the same holds
for Ts.
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Step 4. It remains to show that A is the infinitesimal generator of T . We
have

Tn(t)x− x =

∫ t

0

Tn(s)Anx ds.

If x ∈ D(A), we can let n→∞ to get

Ttx− x =

∫ t

0

TsAxds.

If B is the generator of T , dividing by t and letting t → 0, we get D(A) ⊂
D(B) and B = A on D(A). So B is an extension of A. If λ > 0, then
λ ∈ ρ(A), ρ(B), which implies B cannot be a proper extension by Proposition
13.6.

13.3 Perturbation of semigroups

Lemma 13.8 (Lumer-Phillips) Let A be densely defined in a Hilbert space B
and suppose (0,∞) ⊂ ρ(A). Then ‖Rλ‖ ≤ 1/λ if and only if Re 〈x,Ax〉 ≤ 0
for all x ∈ D(A).

If the last property holds, we say A is dissipative. An example is the
Laplacian:

〈f, Af〉 =

∫
f(x)∆f(x) dx = −

∫
|∇f(x)|2 dx ≤ 0

by integration by parts. Another example is if

Af(x) =
n∑

i,j=1

∂

∂xi

(
aij(·)

∂f

∂xj
(·)
)

(x).

To verify this, we again use integration by parts.

Proof. Suppose

‖(λI − A)−1u‖2 ≤ 1

λ2
‖u‖2.
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Let x = (λI − A)−1u. So

〈x, x〉 ≤ 1

λ2
〈λx− Ax, λx− Ax〉.

This becomes

2Re 〈x,Ax〉 = 〈x,Ax〉+ 〈Ax, x〉 ≤ 1

λ
‖Ax‖2.

This is true for all λ, so let λ→∞.

For the converse,

〈x,Ax〉+ 〈Ax, x〉 = 2Re 〈x,Ax〉 ≤ 0 ≤ 1

λ
‖Ax‖2

for all λ > 0. Now reverse the above steps.

Theorem 13.9 (Trotter) Suppose A is the infinitesimal generator of a semi-
group of contractions in a Hilbert space. Let B be a densely defined dissipative
operator such that D(A) ⊂ D(B) and there exist b > 0 and a ∈ (0, 1) such
that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ D(A).

Then A+B (defined on D(A)) is the generator of a contraction semigroup.

Proof. First, A+B is closed: Let xn → x and yn = (A+B)xn → y. So

A(xn − xm) = yn − ym −B(xn − xm),

and

‖A(xn − xm)‖ ≤ ‖yn − ym‖+ a‖A(xn − xm)‖+ b‖xn − xm‖.

Since a < 1, then Axn converges. Therefore Bxn converges. A is closed, so
Axn → Ax. If x ∈ D(A) ⊂ D(B),

‖Bxn −Bx‖ ≤ a‖Anx− Ax‖+ b‖xn − x‖ → 0.

Then (A+B)xn → (A+B)x.
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Next, λ ∈ ρ(A+B): By the Lumer-Phillips lemma, A is dissipative. B is
also. So A+B is dissipative. By Lumer-Phillips,

‖x‖ ≤ 1

λ
‖(λI − (A+B))x‖.

One immediate consequence of this is that the operator λ − (A + B) is
one-to-one. Another is that the range of λ− (A+B) is closed, because if yn
is in the range and yn → y, then yn = (λ − (A + B))xn for some xn. The
inequality shows that ‖xn − xm‖ → 0. If xn → x, then y = (λ− (A+ B))x,
since A + B is a closed operator. Therefore the range of (A + B) − λI is
closed.

The range is X: if not, there exists v 6= 0 perpendicular to the range.
A−λI is invertible, so there exists x ∈ D(A) such that (A−λI)x = v. Then
v +Bx is in the range, or 〈v +Bx, v〉 = 0. So ‖v‖2 + 〈Bx, v〉 = 0, or

‖v‖2 ≤ ‖Bx‖ ‖v‖,

and so ‖v‖ ≤ ‖Bx‖. Then

‖Ax− λx‖ ≤ ‖Bx‖ ≤ a‖Ax‖+ b‖x‖.

Squaring and use the fact that A is dissipative,

‖Ax‖2 + λ2‖x‖2 ≤ a2‖Ax‖2 + 2ab‖Ax‖ ‖x‖+ b2‖x‖.

This holds for all λ > 0, so for λ large enough, ‖x‖ = 0. So x = 0 and the
range is the whole space.

Now use the Hille-Yosida theorem.

13.4 Groups of unitary operators

We prove Stone’s theorem.

Theorem 13.10 (1) Suppose A is self-adjoint and H is a Hilbert space.
There exists a strongly continuous group U(t) of unitary operators with in-
finitesimal generator iA.

(2) Given a strongly continuous group of unitary operators, the generator
is of the form iA where A is self-adjoint.
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Proof. (1) We saw in our proof that the spectrum of an unbounded self-
adjoint operator is real that ‖(z−A)−1‖ ≤ 1/|Im z|. So if λ > 0 and z = −iλ,
then

‖(λ− iA)−1‖ = ‖(iz − iA)−1‖ = ‖(z − A)−1‖ ≤ 1

|Im (iz)|
=

1

λ
.

The resolvent set of iA contains the positive reals. So iA and −iA satisfy
the Hille-Yosida theorem. Let U(t), V (t) be the respective semigroups.

V and U are inverses:

d

dt
U(t)V (t) = U(t)iAV (t)x− U(t)iAV (t)x = 0.

So U(t)V (t)x is independent of t. When t = 0, we get x. So U(t)V (t)x = x
if x ∈ D(A). But D(A) is dense.

Both U and V are contractions. Since U(t)V (t) = I, they must be norm
preserving. This is because

‖x‖ = ‖U(t)V (t)x‖ ≤ ‖V (t)x‖ ≤ ‖x‖,

so ‖x‖ = ‖V (t)x‖ and similarly with U . Since they are invertible, they are
unitary. Define U(t) = V (−t) for t < 0.

(2) Let V (t) = U(−t). Then U(t) and V (t) are strongly continuous semi-
groups of contractions, and the infinitesimal generators are additive inverses.
So the generators are B,−B.

Since both B,−B are infinitesimal generators, all real numbers except 0
are in the resolvent set of B. Take x ∈ D(B).

‖U(t)x‖2 = (U(t)x, U(t)x) = ‖x‖2.

Take the derivative with respect to t:

(Bx, x) + (x,Bx) = 0.

Letting A = −iB so that B = iA, we see that

〈Ax, x〉 = 〈x,Ax〉 (13.4)

for all x ∈ D(A). Using (13.4) with x replaced by x+ y and with x replaced
by y, we obtain

〈Ax, y〉+ 〈Ay, x〉 = 〈x,Ay〉+ 〈y, Ax〉. (13.5)
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Replacing y by iy in (13.5),

−i〈Ax, y〉+ i〈Ay, x〉 = −i〈x,Ay〉+ i〈y, Ax〉.

Dividing this by i and subtracting from (13.5) we have

〈Ax, y〉 = 〈x,Ay〉.

Therefore A is symmetric and A∗ is an extension of A. It follows that B∗

is an extension of −B. We showed in the previous chapter that the adjoint
of (λ−B)−1 was (λ−B∗)−1, and it follows that ρ(B∗) = ρ(B). If z 6= 0 and
z ∈ R, then z ∈ ρ(B), so z ∈ ρ(B∗). Also z ∈ ρ(−B). By Proposition 13.6
B∗ cannot be a proper extension of −B, hence B∗ = −B, and so A∗ = A, or
A is self-adjoint.
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