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Chapter 1

Poisson processes

1.1 Definitions

Let (2, F,P) be a probability space. A filtration is a collection of o-fields F;
contained in F such that F;, C F; whenever s < t. A filtration satisfies the
usual conditions if it is complete: N € F; for all ¢ whenever P(N) = 0 and
it is right continuous: F;, = F; for all ¢, where Fio = NosoFpie-

Definition 1.1 Let {F;} be a filtration, not necessarily satisfying the usual
conditions. A Poisson process with parameter A > 0 is a stochastic process
X satisfying the following properties:

(1) Xo =0, a.s.

(2) The paths of Xy are right continuous with left limits.

(8) If s < t, then X; — X, is a Poisson random variable with parameter
At — s).

(4) If s < t, then X; — X is independent of Fs.

Define X;_ = lim,_,; s«; X, the left hand limit at time ¢, and AX, =
X; — X,;_, the size of the jump at time t. We say a function f is increasing
if s < ¢ implies f(s) < f(t). We use ‘strictly increasing’ when s < ¢ implies
f(s) < f(t). We have the following proposition.
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Proposition 1.2 Let X be a Poisson process. With probability one, the
paths of X; are increasing and are constant except for jumps of size 1. There
are only finitely many jumps in each finite time interval.

Proof. For any fixed s < t, we have that X; — X, has the distribution of
a Poisson random variable with parameter A(t — s), hence is non-negative,
a.s.; let Ng; be the null set of w’s where X;(w) < X (w). The set of pairs
(s,t) with s and ¢ rational is countable, and so N = U, scq, Vs is also a null
set, where we write Q; for the non-negative rationals. For w ¢ N, X; > X,
whenever s < t are rational. In view of the right continuity of the paths of
X, this shows the paths of X are increasing with probability one.

Similarly, since Poisson random variables only take values in the non-
negative integers, X; is a non-negative integer, a.s. Using this fact for every
t rational shows that with probability one, X; takes values only in the non-
negative integers when t is rational, and the right continuity of the paths
implies this is also the case for all £. Since the paths have left limits, there
can only be finitely many jumps in finite time.

It remains to prove that AX; is either 0 or 1 for all ¢. Let tq > 0.
If there were a jump of size 2 or larger at some time t strictly less than
to, then for each n sufficiently large there exists 0 < k, < 2" such that
X(kn+1)t0/27 — Xknto/2n = 2. Therefore

]P’(Els < to : AXS Z 2) S ]P’(Elk’ S 2" X(k+1)t0/2n - tho/zn Z 2) (11)

<2" sup P(X (k+1)t0 /20 — Xitojan = 2)
<on

- Qn]P)(XtO/Qn 2 2”)
< 2n(1 - IPD()(to/2" = O) - IPj(‘)(to/?” = 1))

_on (1 — e Mo/2" (/\t0/2”)e_”0/2">.

We used Definition 1.1(3) for the two equalities. By 1'Hopital’s rules, (1 —
e —ze*)/x — 0asxz — 0. We apply this with = M,/2", and see that
the last line of (1.1) tends to 0 as n — oco. Since the left hand side of (1.1)
does not depend on n, it must be 0. This holds for each t,. O
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1.2 Stopping times

Throughout this section we suppose we have a filtration {F;} satisfying the
usual conditions.

Definition 1.3 A random variable T : Q@ — [0, 00] is a stopping time if for
allt, (T < t) € Fr. Wesay T is a finite stopping time if T < oo, a.s. We
say T is a bounded stopping time if there exists K € [0,00) such that T < K,
a.s.

Note that T" can take the value infinity. Stopping times are also known as
optional times.

Given a stochastic process X, we define X7(w) to be equal to X (T (w),w),
that is, for each w we evaluate ¢ = T'(w) and then look at X (-,w) at this
time.

Proposition 1.4 Suppose F; satisfies the usual conditions. Then
(1) T is a stopping time if and only if (T <t) € F; for all t.
(2) If T =1, a.s., then T is a stopping time.
(3) If S and T are stopping times, then so are SVT and SAT.

(4) If T, n =1,2,..., are stopping times with T} < Ty < .-+ then so is
sup,, I, .

(5) If T,, n =1,2,..., are stopping times with Ty > Ty > -+, then so is
inf,, T,,.

(6) If s > 0 and S is a stopping time, then so is S + s.

Proof. We will just prove part of (1), leaving the rest as an exercise. Note
(T <t) = Mu>n(T < t+1/n) € Fypqyn for each N. Thus (T" < t) €
OnFirin C Fop = F. O

It is often useful to be able to approximate stopping times from the right.
If T is a finite stopping time, that is, T < oo, a.s., define

To(w) = (k+1)/2"  ifk/2" < T(w) < (k+1)/2". (1.2)
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Define
Fr={AeF: foreacht >0, AN (T <t) € F}. (1.3)

This definition of Fr, which is supposed to be the collection of events that
are “known” by time 7', is not very intuitive. But it turns out that this
definition works well in applications.

Proposition 1.5 Suppose {F;} is a filtration satisfying the usual conditions.
(1) Fr is a o-field.
(2) If S <T, then Fg C Fr.
(3) If Fry = NesoFraie, then Fry = Fr.
(4) If X; has right continuous paths, then X is Fr-measurable.

Proof. If A € Fr, then A°N(T <t)=(T <t)\[AN(T <t)] € F, so
A¢ € Fr. The rest of the proof of (1) is easy.

Suppose A € Fgand S <T. Then AN(T <t)=[AN(S <H)|N(T <t).
We have AN (S <t) € F; because A € Fg, while (T' < t) € F; because T is
a stopping time. Therefore AN (T < t) € F;, which proves (2).

For (3),if A € Fry, then A € Fr,. for every ¢, and so AN(T+¢e <t) € F;
for all t. Hence AN(T < t—e¢) € F; for all t, or equivalently AN(T < t) € Fiic
for all . This is true for all ¢, so AN (T <t) € F;, = F;. This says A € Fr.

(4) Define T,, by (1.2). Note
(X7, € B)N(T,, = k/2") = (Xpjon € B)N (T}, = k/2") € Fjon.

Since T,, only takes values in {k/2" : k > 0}, we conclude (X7, € B) N
(T, <t) € F, and so (Xp,, € B) € Fr,, C Fry1en. Hence Xy, is Friq/on
measurable. If n > m, then X7, is measurable with respect to Fri/on C
Friijom. Since Xg, — Xp, then Xp is Fpyq/0m measurable for each m.
Therefore Xt is measurable with respect to Fr, = Fr. O

1.3 Markov properties

Let us begin with the Markov property.
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Theorem 1.6 Let {F;} be a filtration, not necessarily satisfying the usual
conditions, and let P be a Poisson process with respect to {F;}. If u is a
fixed time, then Y, = Py, — P, is a Poisson process independent of F,.

Proof. Let G, = F,.,. It is clear that Y has right continuous paths,
is zero at time 0, has jumps of size one, and is adapted to {G;}. Since
Y, - Y, = P, — Py, then Y; — Y} is a Poisson random variable with mean
A(t — s) that is independent of Fy.,, = Gs. O

The strong Markov property is the Markov property extended by replacing
fixed times u by finite stopping times.

Theorem 1.7 Let {F;} be a filtration, not necessarily satisfying the usual
conditions, and let P be a Poisson process adapted to {F;}. If T is a finite
stopping time, then Y; = Pr.y — Pr is a Poisson process independent of Fr.

Proof. We will first show that whenever m > 1, t; < --- < t,,, f is a
bounded continuous function on R™, and A € Fr, then

E[f(Yi,.... Yo ): Al = E[f(P..... P\,.) | B(A). (1.4)

Once we have done this, we will then show how (1.4) implies our theorem.

To prove (1.4), define T,, by (1.2). We have
E[f(Pro+t, — Pros -, Prostn, — Pr,); Al (1.5)

k=1

= E [f(Pt1+k/2" — Pk/Qn, e ,Ptm+k/2n — Pk/gn), A, Tn = k/2n]
k=1
Following the usual practice in probability that “” means “and,” we use

“E[---; AT, = k/2"” as an abbreviation for “E[--- ;AN (T, = k/2")].”
Since A € Fr, then AN(T,, = k/2") = AN((T < k/2")\ (T < (k—1)/2™)) €
Fijon. We use the independent increments property of Poisson process and
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the fact that P, — P, has the same law as P,_; to see that the sum in the last
line of (1.5) is equal to

ZE U (Peyrjor — Pojons ooy Pryiijon — Prjon)| P(A, T, = k/27)
=1

=> E[f(Py,.... P, P(A,T, = k/2")
k=1
=E [f(Ptu S 7Ptm)] P(A)v
which is the right hand side of (1.4). Thus

E[f<PTn+t1 _PTn>"'7PTn+tm _PTn);A] (16)
=E[f(Py,.... P, P(A).

Now let n — oo. By the right continuity of the paths of P, the bounded-
ness and continuity of f, and the dominated convergence theorem, the left
hand side of (1.6) converges to the left hand side of (1.4).

If we take A = Q in (1.4), we obtain

Elf (Y, - Vi) =Ef (P, By

whenever m > 1, ty,...,t, € [0,00), and f is a bounded continuous function
on R™. This implies that the finite dimensional distributions of Y and P are
the same. Since Y has right continuous paths, Y is a Poisson process.

Next take A € Fr. By using a limit argument, (1.4) holds whenever f is
the indicator of a Borel subset B of R?, or in other words,

P(Y € B,A) = P(Y € B)P(A) (1.7)

whenever B is a cylindrical set. O

When we discuss the Skorokhod topology, we will be able be more precise
for the independence argument.

Observe that what was needed for the above proof to work is not that P
be a Poisson process, but that the process P have right continuous paths and
that P, — P, be independent of F; and have the same distribution as P,_,.
We therefore have the following corollary.
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Corollary 1.8 Let {F;} be a filtration, not necessarily satisfying the usual
conditions, and let X be a process adapted to {F;}. Suppose X has paths
that are right continuous with left limits and suppose X; — X, is independent
of Fs and has the same law as X;_s whenever s <t. If T is a finite stopping
time, then Yy = Xpy — X is a process that is independent of Fr and X and
Y have the same law.

1.4 A characterization

Another characterization of the Poisson process is as follows. Let 77 = inf{¢ :
AX,; = 1}, the time of the first jump. Define T;; = inf{t > T; : AX; = 1},
so that T} is the time of the ¥ jump.

Proposition 1.9 The random variables Ty, Ty — Ty, ..., T;x1 — T;, ... are
independent exponential random variables with parameter \.

Proof. In view of Corollary 1.8 it suffices to show that 77 is an exponential
random variable with parameter A. If T} > ¢, then the first jump has not
occurred by time ¢, so X; is still zero. Hence

P(Ty >t) =P(X, =0) =e ™,
using the fact that X; is a Poisson random variable with parameter At. O
We can reverse the characterization in Proposition 1.9 to construct a Pois-

son process. We do one step of the construction, leaving the rest as an
exercise.

Let Uy, Us, ... be independent exponential random variables with param-
eter A and let T; = >"7_, U;. Define
Xi(w) =k if Ty (w) <t < Thy1(w). (1.8)

An examination of the densities shows that an exponential random variable
has a gamma distribution with parameters A and r = 1, so 7} is a gamma
random variable with parameters A and j. Thus

PG <) =BT > 0 = [ 2

t 0 dx.
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Performing the integration by parts repeatedly shows that

k-1 i
P(X, <k)=)_ e**t@,

7!
i=0

and so X; is a Poisson random variable with parameter At.

We will use the following proposition later.

Proposition 1.10 Let {F;} be a filtration satisfying the usual conditions.
Suppose Xog =0, a.s., X has paths that are right continuous with left limats,
X — X, 1s independent of Fs if s < t, and X; — X, has the same law as X;_
whenever s < t. If the paths of X are piecewise constant, increasing, all the
gumps of X are of size 1, and X 1is not identically 0, then X is a Poisson
process.

Proof. Let Ty =0 and T4y = inf{t > T; : AX; =1},i=1,2,.... We will
show that if we set U; = T; — T;_1, then the U,’s are i.i.d. exponential random
variables.

By Corollary 1.8, the U;’s are independent and have the same law. Hence
it suffices to show U; is an exponential random variable. We observe

]P)(U1 > S+t)

]P)(Xs-i—t = 0) == ]P)(Xs-i—t - XS = 07X5 = O)
P(Xy1s — X, = 0)P(X, = 0) = P(X, = 0)P(X, = 0)
]P)(Ul > t)]P)(Ul > 8).

Setting f(t) = P(U; > t), we thus have f(t +s) = f(t)f(s). Since f(¢) is
decreasing and 0 < f(t) < 1, we conclude P(U; > t) = f(t) = e~ for some
A > 0, or U; is an exponential random variable. O

1.5 Martingales

We define continuous time martingales. Let {F;} be a filtration, not neces-
sarily satisfying the usual conditions.
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Definition 1.11 M, is a continuous time martingale with respect to the fil-
tration {F;} and the probability measure P if

(1) E|M,| < oo for each t;
(2) M is F; measurable for each t;
(3) E[M, | Fs] = M, a.s., if s < t.

Part (2) of the definition can be rephrased as saying M, is adapted to F;.
If in part (3) “=" is replaced by “>.” then M, is a submartingale, and if it
is replaced by “<,” then we have a supermartingale.

Taking expectations in Definition 1.11(3), we see that if s < ¢, then E M <
E M; is M is a submartingale and E My > E M, if M is a supermartingale.
Thus submartingales tend to increase, on average, and supermartingales tend
to decrease, on average.

If P, is a Poisson process with index A, then P, — At is a continuous time
martingale. To see this,

E[P,— M| F]=E[P.— P | Fs] = A\t + Ps
=E[P, — P| — M + P,
= ANt —3s)= A+ P
=P, — )s.

We give another example of a martingale.

Example 1.12 Recall that given a filtration {F;}, each F; is contained in
F, where (2, F,P) is our probability space. Let X be an integrable F mea-
surable random variable, and let M; = E [X | 7;]. Then

and M is a martingale.

We derive the analogs of Doob’s inequalities in the stochastic process
context.

Theorem 1.13 Suppose M, is a martingale or non-negative submartingale
with paths that are right continuous with left limits. Then
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(1)
P(sup | M| > ) < E[M|/X.

s<t

(2) If 1 < p < oo, then

E fsup M, < (—2=) E Ml
-

s<t

Proof. We will do the case where M, is a martingale, the submartingale
case being nearly identical. Let D, = {kt/2" : 0 < k < 2"}. If we set
N,g") = My /on and Q,E") = Fpejon, it is clear that {N,g")} is a discrete time
martingale with respect to {g,i"’}. Let A, = {sup,c; ep, |Ms| > A}. By
Doob’s inequality for discrete time martingales,

E|NS|  E|M|
= (n) < = t
P(A,) P(mk§%§|]\7k | >A) < 3 3

Note that the A,, are increasing, and since M; is right continuous,

UnAn = {sup | M| > A}.

s<t

Then
P(sup [M,| > \) = P(U,A,) = lim P(4,) < E|M,]|/).
s<t n—oo

If we apply this with A replaced by A — ¢ and let ¢ — 0, we obtain (1).

The proof of (2) is similar. By Doob’s inequality for discrete time martin-
gales,
p P\
E [sup INP) < (—25) BINGDP = (25) B
sup NP < (2RI = (2) B
Since supj<gn |N,§n) |? increases to sup,; |M|? by the right continuity of M,
(2) follows by Fatou’s lemma. O

Here is an example. If P, is a Poisson process of index A, then P, — At is
a martingale. So e**~*) is a submartingale for any real number a. Then

P(sup P, — As > A) = P(sup =728 5> ¢a4) < ¢ 704 gt eaM,
s<t s<t
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We know
E e = exp <(e“ — 1))\15).

We substitute this in the above and then optimize over a.

We will need Doob’s optional stopping theorem for continuous time mar-
tingales.

Theorem 1.14 Let {F;} be a filtration satisfying the usual conditions. If M,
1s a martingale or non-negative submartingale whose paths are right contin-
uous, suptzoEMf < 00, and T is a finite stopping time, then E My > E M,.

Proof. We do the submartingale case, the martingale case being very similar.
By Doob’s inequality (Theorem 1.13(1)),

E [sup M?] < 4E M}.

s<t
Letting ¢ — oo, we have I [sup,»o M{] < co by Fatou’s lemma.

Let us first suppose that T' < K, a.s., for some real number K. Define
T, by (1.2). Let N = Myjon, G = Fyjon, and S, = 2"T,. By Doob’s

)

optional stopping theorem applied to the submartingale N ,in , we have

EMy =EN” <EN{ =E My,.

Since M is right continuous, My, — Mr, a.s. The random variables |Mr7 |
are bounded by 14sup,>, M?, so by dominated convergence, E My, — E Mr.

We apply the above to the stopping time T'A K to get E My g > E M,.
The random variables Mz, are bounded by 1+sup,- Mf, so by dominated
convergence, we get [E My > E My when we let K — oo. |

We present the continuous time version of Doob’s martingale convergence
theorem. We will see that not only do we get limits as ¢ — oo, but also a
regularity result.

Let D, ={k/2" : k > 0}, D =U,D,.

Theorem 1.15 Let {M; : t € D} be either a martingale, a submartingale, or
a supermartingale with respect to {F; : t € D} and suppose sup,ep E | M| <
0o. Then
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(1) limy_,o, M, exists, a.s.

(2) With probability one M, has left and right limits along D.

The second conclusion says that except for a null set, if ¢, € [0,00), then
both limyep i1y My and limyep 4y, M, exist and are finite. The null set does
not depend on .

Proof. Martingales are also submartingales and if M, is a supermartingale,
then —M,; is a submartingale, so we may without loss of generality restrict
our attention to submartingales. By Doob’s inequality,

1
P( sup |M] > ) < {E|M,].

tEDp t<n

Letting n — oo and using Fatou’s lemma,

1
P(sup [M;] > A) < —supE[M,].
teD t
This is true for all A, so with probability one, {|M;| : t € D} is a bounded

set.

Therefore the only way either (1) or (2) can fail is that if for some pair of
rationals a < b the number of upcrossings of [a, b] by {M; : t € D} is infinite.
Recall that we define upcrossings as follows.

Given an interval [a,b] and a submartingale M, if S; = inf{t : M, < a},
T, = inf{t > S; : M; > b}, and S;; = inf{t > T; : M; < a}, then the number
of upcrossings up to time w is sup{k : T, < u}.

Doob’s upcrossing lemma tells us that if V,, is the number of upcrossings
by {M; :t € D, N [0,n]}, then
E [M,]
b—a
Letting n — oo and using Fatou’s lemma, the number of upcrossings of [a, b]
by {M, : t € D} has finite expectation, hence is finite, a.s. If N, is the null
set where the number of upcrossings of [a, b] by {M, : t € D} is infinite and

N = Usctapeq, Nap, where Q4 is the collection of non-negative rationals,
then P(N) =0. If w ¢ N, then (1) and (2) hold. O

EV, <

As a corollary we have
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Corollary 1.16 Let {F;} be a filtration satisfying the usual conditions, and
let M, be a martingale with respect to {F;}. Then M has a version that is
also a martingale and that in addition has paths that are right continuous
with left limaits.

Proof. Let D be as in the above proof. For each integer N > 1, E |M;| <
E|My| < oo for t < N since |M;| is a submartingale by the conditional
expectation form of Jensen’s inequality. Therefore M;,y has left and right
limits when taking limits along ¢t € D. Since N is arbitrary, M, has left and
right limits when taking limits along ¢t € D, except for a set of w’s that form
a null set. Let .
M, = lim M,.
u€ED,u>t,u—t

It is clear that /]14/ has paths that are right continuous with left limits. Since
Fir = F; and M, is F;, measurable, then M, is F; measurable.

Let N be fixed. We will show {M;;t < N} is a uniformly integrable family
of random variables. Let € > 0. Since My is integrable, there exists ¢ such
that if P(A) < 6, then E [|[My|; A] < e. If L is large enough, P(|M,| > L) <
E|M;|/L <E|My|/L < 6. Then

E[|M]; M| > L] < E[[My|; | M| > L] <,

since |M;| is a submartingale and (|M;| > L) € F;. Uniform integrability is
proved.

Now let t < N. If B € F;,

E[M,;;B] = lim [E[M,:B]=E[M,;B).
uED,u>t,u—t
Here we used the Vitali convergence theorem and the fact that M; is a mar-
tingale. Since M; is F; measurable, this proves that M, = M,, a.s. Since N
was arbitrary, we have this for all . We thus have found a version of M that
has paths that are right continuous with left limits. That M, is a martingale
is easy. |

The following technical result will be used in the next chapter. A function
f is increasing if s < ¢t implies f(s) < f(t). A process A; has increasing paths
if the function ¢t — A;(w) is increasing for almost every w.
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Proposition 1.17 Suppose {F;} is a filtration satisfying the usual condi-
tions and suppose A; is an adapted process with paths that are increasing,
are right continuous with left limits, and A, = limy_, A; exists, a.s. Sup-
pose X s a non-negative integrable random variable, and M, is a version of
the martingale B [X | F;] which has paths that are right continuous with left
limits. Suppose E[X As] < 00. Then

IE/ XdAS:IE/ M, dA,. (1.9)
0 0

Proof. First suppose X and A are bounded. Let n > 1 and let us write
E fooo X dA; as

Z E [ X (Agjon — Ag1y/2n))-

Conditioning the k" summand on Fy/on, this is equal to

E [ZE [X | Fryan] (Agyan = A(k—l)/2n)]~
k=1

Given s and n, define s,, to be that value of £/2" such that (k—1)/2" < s <
k/2". We then have

IE/ XdAS:]E/ M, dA,. (1.10)
0 0

For any value of s, s,, | s as n — oo, and since M has right continuous paths,
M, — M;. Since X is bounded, so is M. By dominated convergence, the
right hand side of (1.10) converges to

E / M, dA,.
0

This completes the proof when X and A are bounded. We apply this to
X AN and AA N, let N — oo, and use monotone convergence for the
general case. |

The only reason we assume X is non-negative is so that the integrals make
sense. The equation (1.9) can be rewritten as

/ X dA, _]E/ E[X | F.] dA,. (1.11)
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We also have . .
E/ X dA; :]E/ E[X | Fs] dAs (1.12)
0 0
for each ¢t. This follows either by following the above proof or by applying
Proposition 1.17 to Asa;.
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Chapter 2

Lévy processes

A Lévy process is a process with stationary and independent increments
whose paths are right continuous with left limits. Having stationary incre-
ments means that the law of X; — X, is the same as the law of X;_; — X
whenever s < t. Saying that X has independent increments means that
X; — X is independent of o(X,;r < s) whenever s < t.

We want to examine the structure of Lévy processes. We know three ex-
amples: the Poisson process, Brownian motion, and the deterministic process
X, =t. It turns out all Lévy processes can be built up out of these as build-
ing blocks. We will show how to construct Lévy processes and we will give a
representation of an arbitrary Lévy process.

Recall that we use X;_ = lim,<; s, X; and AX, = X, — X,_.

2.1 Examples

Let us begin at looking at some simple Lévy processes. Let Ptj sy 7=1,....J,
be a sequence of independent Poisson processes with parameters A;, resp.
Each P/ is a Lévy process and the formula for the characteristic function of
a Poisson random variable shows that the characteristic function of P/ is

Ee™ = exp(tA;(e™ — 1)).

17
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Therefore the characteristic function of a; P/ is
E el = exp(th;(e™* — 1))
and the characteristic function of athj — a;\;t is
[ giuai Pf —a)irjt — exp(t)\j(ei““j — 1 —tuay)).

If we let m; be the measure on R defined by m;(dr) = \;d4,(dz), where
d4,(dx) is point mass at a;, then the characteristic function for a; P/ can be
written as

exp <t/R[e“” —1] mj(d:v)) (2.1)

and the one for a; P} — aj\;t as
exp (t / [e™® — 1 — jux] mj(dx)>. (2.2)
R

Now let J
X, =Y a;P.
j=1

It is clear that the paths of X; are right continuous with left limits, and
the fact that X has stationary and independent increments follows from the
corresponding property of the P7’s. Moreover the characteristic function of
a sum of independent random variables is the product of the characteristic
functions, so the characteristic function of X; is given by

E "Xt = exp (t /R[ei“”” —1] m(dm)) (2.3)

with m(dx) = 37| Ajdq, (dx).

The process Y; = X; — tz;.lzl a;\; is also a Lévy process and its charac-
teristic function is

E ™ = exp (t/R[ei"z — 1 — iuz] m(dx),) (2.4)

again with m(dz) = Z}]=1 Ajbq; (d).
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Remark 2.1 Recall that if ¢ is the characteristic function of a random vari-
able Z, then ¢/'(0) = iE Z and ¢"(0) = —E Z?. If Y} is as in the paragraph
above, then clearly EY; = 0, and calculating the second derivative of E e?¥t
at 0, we obtain

EY? = t/x2 m(dx).
The following lemma is a restatement of Corollary 1.8.

Lemma 2.2 If X, is a Lévy process and T is a finite stopping time, then
Xriy— Xp is a Lévy process with the same law as X; — Xy and independent

Of ]:T .
We will need the following lemma:

Lemma 2.3 Suppose X1, ..., X, are independent exponential random vari-
ables with parameters aq, ..., a,, resp.

(1) Then min(Xy, ..., X,) is an exponential random variable with parameter
a4+ -+ a,.

(2) The probability that X; is the smallest of the n exponentials is

Q;
a1+...+an

Proof. (1) Write

Pmin(Xy,...,X,) >t) =P(X; >¢,..., X, >t) =P(X; > t)---P(X,, > 1)

—ait —ant _ 67(a1+---+an)t

=e ‘e

(2) Without loss of generality we may suppose ¢ = 1. Let’s first do the
case n = 2. The joint density of (X1, X3) is aje”"%aze*?Y and we want to
integrate this over x < y. Doing the integration yields a;/(a; + as). For the
general case of n > 2, apply the above to X; and min(Xs, ..., X,,). O

If P,..., P, are independent Poisson processes with parameters \q,..., \,
resp., let X; =" | b;Pi(t). By the above lemma, the times between jumps
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of X are independent exponentials with parameter \; + --- 4+ \,. At each
jump, X jumps b; with probability \;/(A1 + -+ + \).

Thus another way to construct X is to let Uy, Us, ... be independent ex-
ponentials with parameter Ay + ... + A, and let Y;,Y5,... be a sequence
of i.i.d. random variables independent of the U;’s such that P(Y), = b;) =
N/ (A + ...+ Ay). We then let X, be 0, let X; be piecewise constant, and
at time )", U; we let X jump by the amount Y,,.

2.2 Construction of Lévy processes

A process X has bounded jumps if there exists a real number K > 0 such
that sup, |[AX;| < K, a.s.

Lemma 2.4 If X; is a Lévy process with bounded jumps and with Xy, = 0,
then X; has moments of all orders, that is, E|Xy|P < oo for all positive
integers p.

Proof. Suppose the jumps of X; are bounded in absolute value by K.
Since X; is right continuous with left limits, there exists M > K such that
P(sup,., | X,| > M) < 1/2

Let Ty = inf{t : |X¢| > M} and T}y = inf{t > T, : | X; — Xr,| > M}. For
s < Ty, | Xs| < M, and then |Xp| < | X7 |+ |AX7y| < M+ K <2M. We
have

Pl <t) <P(Ti <t,Tiya —T; < 1)
=P(Ti — T, < t)P(T; < 1)
P(T, < t)P(T; < t),

using Lemma 2.2. Now

P(Ty < t) < P(sup |X,| > M) < 3,

s<t
so P(Tiy1 < t) < iP(T; < t), and then by induction, P(T; < ¢) < 27%

Therefore .
P(sup | X,| > 2(i + 1)M) < P(T; < t) < 27

s<t
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and the lemma now follows immediately. |

A key lemma is the following.

Lemma 2.5 Suppose I is a finite interval of the form (a,b), [a,b), (a,b], or
[a,b] with a > 0 and m is a finite measure on R giving no mass to I¢. Then
there exists a Lévy process X, satisfying (2.3)

Proof. First let us consider the case where I = [a,b). We approximate m
be a discrete measure. If n > 1, let z; =a+j(b—a)/2", j=0,...,2" — 1,

and let
on_q

ma(de) = 37 mllz, 241))3, (do),

j=0

where 0., is point mass at z;. The measures m, converge weakly to m as
n — oo in the sense that

/ (@) mn(dz) — / (o) da

whenever f is a bounded continuous function on R.

We let Uy, Us, ... be independent exponential random variables with pa-
rameter m(l). Let Y7,Y5,... be i.i.d. random variables independent of the
U;’s with P(Y; € dz) = m(dz)/m(I). We let X, start at 0 and be piecewise
constant with jumps of size Y,, at times > ;" U;.

If we define X} is the exact same way, except that we replace m by m,,
and we let V" = z; if Y] € [2;, 2j41), then we know from the previous section
that X} is a Lévy process with Lévy measure m,,. Moreover each Y, differs
from Y; by at most (b — a)27", so

sup | X7 — X,| < (b— a)2"N,

s<t

where N is the number of jumps of these processes before time t. N is a
Poisson random variable with parameter m(/), so has moments of all orders.
It follows that X' converges uniformly to X, almost surely on each finite
interval, and the difference goes to 0 in L? for each p.
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We conclude that the law of X; — X, is independent of F; and has the
same law as that of X,_; because these hold for each X".
Since x — €* is a bounded continuous function and m,, converges weakly
to m, starting with

E exp(iuX]') = exp (t/[e’m —1] mn(dx>>7

and passing to the limit, we obtain that the characteristic function of X
under P is given by (2.3).

If now the interval I contains the point b, we follow the above proof, ex-
cept we let P?" ! be a Poisson random variable with parameter m([z,_1, b]).
Similarly, if I does not contain the point a, we change P to be a Poisson
random variable with parameter m((a, z;)). With these changes, the proof
works for intervals I, whether or not they contain either of their endpoints.
O

Remark 2.6 If X is the Lévy process constructed in Lemma 2.5, then Y; =
X; — E X; will be a Lévy process satisfying (2.4).

Here is the main theorem of this section.

Theorem 2.7 Suppose m is a measure on R with m({0}) =0 and

/(1 A 2)m(dz) < 0o.

Suppose b € R and o > 0. There exists a Lévy process X; such that

E Xt = exp (t{iub —o*u?/2 + /

R[ei“x -1- iu:cl(mgl)]m(dx)}). (2.5)

The above equation is called the Lévy-Khintchine formula. The measure
m is called the Lévy measure. If we let

1+ 22

m(dx) = .

m'(dx)
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and

b=1 + / v (dz) / Y (dz)
= ——m(dx) — ——m(dzx
(lej<1) 1 + 22 (ef>1) 1 + @7 ’

then we can also write

) ) ) 1 2
E Xt = exp (t{iub’ —o*u?/2 + /R [e““” -1- 12_?3;2] :C—;C m’(da:)}).

Both expressions for the Lévy-Khintchine formula are in common use.

Proof. Let m(dxz) be a measure supported on (0,1] with [z*m(dz) <
0o. Let m,(dr) be the measure m restricted to (27",27"]. Let Y;* be
independent Lévy processes whose characteristic functions are given by (2.4)
with m replaced by m,,; see Remark 2.6. Note EY," = 0 for all n by Remark
2.1. By the independence of the Y"’s, if M < N,

—M

E(th"Y: _iE(Yt”)Q: _it/:ﬁmn(dx) :t/:N r* m(dr).

By our assumption on m, this goes to 0 as M, N — oo, and we conclude
that Z'r]:]:() Y™ converges in L? for each ¢t. Call the limit Y;. It is routine
to check that Y; has independent and stationary increments. Each Y," has
independent increments and is mean 0, so

EY =Y F]=E[" =Y =0,

or Y™ is a martingale. By Doob’s inequalities and the L? convergence,
N
DY

n=M

as M, N — oo, and hence there exists a subsequence M, such that Zan’“l Yo
converges uniformly over s < t, a.s. Therefore the limit Y; will have paths
that are right continuous with left limits.

2
E sup — 0

s<t

If m is a measure supported in (1,00) with m(R) < oo, we do a similar
procedure starting with Lévy processes whose characteristic functions are of
the form (2.3). We let m,,(dx) be the restriction of m to (27, 2""1], let X be
independent Lévy processes corresponding to m,,, and form X, = > > X"
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Since m(R) < oo, for each ty, the number of times ¢ less than ¢ at which
any one of the X/ jumps is finite. This shows X; has paths that are right
continuous with left limits, and it is easy to then see that X, is a Lévy process.

Finally, suppose [ 2? A 1m(dx) < co. Let X}, X? be Lévy processes with
characteristic functions given by (2.3) with m replaced by the restriction
of m to (1,00) and (—oo,—1), resp., let X2, X} be Lévy processes with
characteristic functions given by (2.4) with m replaced by the restriction of
m to (0,1] and [—1,0), resp., let X} = bt, and let X? be ¢ times a Brownian
motion. Suppose the X%’s are all independent. Then their sum will be a
Lévy process whose characteristic function is given by (2.5). |

A key step in the construction was the centering of the Poisson processes
to get Lévy processes with characteristic functions given by (2.4). Without
the centering one is forced to work only with characteristic functions given
by (2.3).

2.3 Representation of Lévy processes

We now work towards showing that every Lévy process has a characteristic
function of the form given by (2.5).

Lemma 2.8 If X, is a Lévy process and A is a Borel subset of R that is a
positive distance from 0, then

N(A) = 14(AX,)

s<t

15 a Poisson process.

Saying that A is a positive distance from 0 means that inf{|z|: x € A} > 0.

Proof. Since X, has paths that are right continuous with left limits and A is
a positive distance from 0, then there can only be finitely many jumps of X
that lie in A in any finite time interval, and so Ny(A) is finite and has paths
that are right continuous with left limits. It follows from the fact that X,
has stationary and independent increments that N;(A) also has stationary
and independent increments. We now apply Proposition 1.10. O
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Our main result is that Ny(A) and Ny(B) are independent if A and B are
disjoint.

Theorem 2.9 Let {F;} be a filtration satisfying the usual conditions. Sup-
pose that Ny(A) is a Poisson point process with respect to the measure \. If
Ay, ..., Ay are pairwise disjoint measurable subsets of R with E Ny(Ay) < oo
for k =1,...,n, then the processes Niy(A1),..., Ni(A,) are mutually inde-
pendent.

Proof. Define A\(A) = E N;(A). The previous lemma shows that if A\(A) <
00, then N;(A) is a Poisson process, and clearly its parameter is A(A4). We
first make the observation that because Aq, A,, ..., A, are disjoint, then no
two of the Ny(Ay) have jumps at the same time.

To prove the theorem, it suffices to let 0 =ry < r; < --- < r,, and show
that the random variables

{NTj (A/f) - N

Tj_l

(Ag) 1< j<m1<k<n}

are independent. Since for each j and each k, N, (Ax) — N,,_,(Ag) is in-
dependent of F, _, it suffices to show that for each j < m, the random
variables

_19

{Nrj (Ak) — Nrj,1 (Ak) 01 < k < n}
are independent. We will do the case j = m = 1 and write r for r; for

simplicity; the case when j,m > 1 differs only in notation.

We will prove this using induction. We start with the case n = 2 and show
the independence of N,.(A;) and N,.(As). Each N, (Ag) is a Poisson process,
and so N;(Ax) has moments of all orders. Let u;,us € R and set

or = AMAp)(e™ —1), k=12
Let
Mtk‘ — eiuth(Ak)ftd)k.

We see that MF is a martingale because E e = ¢! and therefore

E [Mtk | F] = MSk]E [eiU(Nt(Ak)—Ns(Ak)))—(t—8)¢k | Fi]
— Ms’fe—(t—s)@c]E [eiu(Nt(Ak)—Ns(Ak))] - Mf’



26 CHAPTER 2. LEVY PROCESSES

using the independence and stationarity of the increments of a Poisson pro-
cess.

Now we can write

t
E[M!M?| =E[M]+E / M} dM?
0

t
:1+E/M;dM§,
0

using that MZ = 1, M' is a martingale, and Proposition 1.17. (Here M? is
the difference of two increasing processes; the adjustments needed are easy.)

Since we have argued that no two of the N;(Ax) jump at the same time,
the same is true for the MF and so the above is equal to

t
1+E / M} dM?.
0

It therefore remains to prove that the above integral is equal to 0.

If H, is a process of the form

where K is F, measurable, then
t
/ H, dM52 = K(Mtz/\b - MtQAa)>
0

and conditioning on F,, the expectation is zero:
E [K(MtQ/\b - MtQ/\a)] =E[KE [MtQ/\b - MtQ/\a | Fa]] =0,

using that M? is a martingale. We are doing Lebesgue-Stieltjes integrals
here, but the argument is similar to one used with stochastic integrals. The
expectation is also 0 for linear combinations of such H’s. Since M} is left
continuous, we can approximate it by such H’s, and therefore the integral is
0 as required.

We thus have
IEM,}MT2 =1.
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This implies

E 6i(u1Nr(A1)+u2Nr(A2)) — 12 — R [eiulNr(Al)]E |:€iu2Nr(A2):| '

Since this holds for all uy, us, then N,(A;) and N,(As) are independent. We
conclude that the processes N;(A;) and Ny(As) are independent.

To handle the case n = 3, we first show that M/M? is a martingale. We
write

E(MIM? | F)
— Msleef(t*S)(%Jr@)]E [ei(ul(Nt(A1)*Ns(Al))+u2(Nt(A2)*Ns(A2))) ‘ -7:5]
— M;Mfef(tfs)(¢1+d)2)]E [ei(ul(Nt(Al)st(Al))+u2(Nt(A2)*Ns(A2)))]
— M1M2

using the fact that Ny (A;) and N;(Ay) are independent of each other and
each have stationary and independent increments.

Note that M} = ¢™sNe(43)=1¢s hag no jumps in common with M} or M2.
Therefore if M? = M}, then

3 =1 =2

E[M. (M_M.)] =0,

[e.e]

and as before this leads to
E [M; (M, M?)] = 1.

As above this implies that N,.(A4;), N,(Asz), and N,(A3) are independent. To
prove the general induction step is similar. O

We will also need the following corollary.

Corollary 2.10 Let F; and Ni(Ax) be as in Theorem 4.2. Suppose Y, is a
process with paths that are right continuous with left limits such that Y; — Y
15 independent of Fy whenever s < t and Y; — Y, has the same law as Y;_, for

each s < t. Suppose moreover that Y has no jumps in common with any of
the Ni(Ax). Then the processes Ny(A1), ..., Ni(A,), and Yy are independent.
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Proof. The law of Yj is the same as that of Y; — Y}, so Yy = 0, a.s. By the
fact that Y has stationary and independent increments,

uYs _ Y, uw(Ysat—Ys) Y, uYs
E ¢¥stt = E eV F Yo+t Ys) — E WV ¥t

which implies that the characteristic function of Y is of the form E ™Yt =

e for some function (u).

We fix © € R and define

MtY _ eiuYt—tw(u).
As in the proof of Theorem 4.2, we see that MY is a martingale. Since MY

has no jumps in common with any of the M}, if M:/ = MY, we see as above
that

Y —+1 —mn

E[M. (M- M) =1,
or
E[MYM!- - M" =1.
This leads as above to the independence of Y from all the N;(Ax)’s. O

Here is the representation theorem for Lévy processes.

Theorem 2.11 Suppose X; is a Lévy process with Xq = 0. Then there exists
a measure m on R — {0} with

/(1 A z?)m(dx) < oo

and real numbers b and o such that the characteristic function of X, is given

by (2.5).

Proof. Define m(A) = EN;(A) if A is a bounded Borel subset of (0, 00)
that is a positive distance from 0. Since Ny (U, Ag) = > ro, Ni(Ag) if the
Ay are pairwise disjoint and each is a positive distance from 0, we see that
m is a measure on [a, b] for each 0 < a < b < 0o, and m extends uniquely to
a measure on (0, c0).
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First we want to show that ngt AXlax,>1) is a Lévy process with

characteristic function
m .
exp (t/ [ — 1] m(dm))
1

Since the characteristic function of the sum of independent random variables
is equal to the product of the characteristic functions, it suffices to suppose
0 < a < b and to show that

E ™% = exp <t/ [e® — 1] m(dx)),
(a,b]

a

where

Zy =) AX(y(AX,).

s<t

Let n > 1 and z; = a+j(b—a)/n. By Lemma 2.8, Ny((2;, 2,41]) is a Poisson
process with parameter

l; =E Ni((2j-1,7]) = m((2;, 2j11])-

Thus Z;:Ol 2;N((zj, 2j+1]) has characteristic function

—_

n—

n—1
[T exp(tt; (e — 1)) = exp <t (e — 1)@),
=0 ‘

1
o

which is equal to
exp <t/(ei“x - 1) mn(da:)>, (2.6)

where m,,(dz) = Z;:Ol {;0,,(dx). Since Z}' converges to Z; as n — 00, passing
to the limit shows that Z; has a characteristic function of the form (2.5).

Next we show that m(1,00) < co. (We write m(1, 0o) instead of m((1, 00))
for esthetic reasons.) If not, m(1, K) — oo as K — oo. Then for each fixed
L and each fixed t,

- m(1, K)?
limsup P(NV;(1, K) < L) = lim supZe_tm(l’K)’+ = 0.
K—o0 K—oco = ]!
Jj=0
This implies that Ny(1,00) = oo for each t. However, this contradicts the
fact that X; has paths that are right continuous with left limits.
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We define m on (—o0,0) similarly.

We now look at
Y, = X, — ZAXsl(\AXsm)-

s<t

This is again a Lévy process, and we need to examine its structure. This
process has bounded jumps, hence has moments of all orders. By subtracting
cit for an appropriate constant c¢;, we may suppose Y; has mean 0. Let
I, I, ... be an ordering of the intervals {[27(m+1) 2-m) (—2-m _2=(m+1)] .
m > 0}. Let

s<t

and let X* = X* — E XF. By the fact that all the X* have mean 0 and are
independent,

SEEE <E[(v-3 X)) ]+ E[(Lx)] —Em < s
k=1 k=1 k=1
Hence
E[for: E (X2
k=M k=M

tends to 0 as M, N — oo, and thus X, — S_~ | X/ converges in L?. The
limit, X¢, say, will be a Lévy process independent of all the XF. Moreover,
X°¢ has no jumps, i.e., it is continuous. Since all the X* have mean 0, then
E X7 = 0. By the independence of the increments,

EIX7 - X R =E[X7 - X{ =0,

and we see X¢ is a continuous martingale. Using the stationarity and inde-
pendence of the increments,

E[(X{1)] = E[(X9)7] + 2B [X{(XE,, — XO] + E[(X,, — X))
E[(X9)]+E[(X7)7,
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which implies that there exists a constant ¢y such that E (X{)? = cot. We
then have

E[(X)* — oot | Fi] = (X9)* — cas + E[(X] = X0)* | o] — caft — 9)
= (X0)* — c2s + E[(X] — X0)*] — ot — 5)
= (X2 — ¢ys.

The quadratic variation process of X¢ is therefore cot, and by Lévy’s theorem,
X¢/\/cs is a constant multiple of Brownian motion.

To complete the proof, it remains to show that f_ll r?m(dz) < oo. But by
Remark 2.1,
/ > m(dx) = E (XF)?,
I
and we have seen that

Y E(Xf)? <EYP < o
k

Combining gives the finiteness of f_ll > m(dzx). O

2.4 Symmetric stable processes

Let a € (0,2). If
c
m(d:c) = W dl’,
we have what is called a symmetric stable process of index a. We see that
J 1A 2?m(dz) is finite.

Because |z| 717 is symmetric, in the Lévy-Khintchine formula we can take

iU 1(|z|<q) for any a instead of iux 1(z/<1). Then

ux . c UT y —C
/ [e — 1 —dux 1(|x\<1)] W dx = / [6 — 1 —ux 1(|9ﬂ|<1/\UD] |1+ dz

7 . ady
= / [6 vy—1-— Yy 1(‘y|<1)i| |u|1+ m

= —c|ul®.
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In the last line we have the negative sign because the imaginary part of
e — 1 — iy l(y<1) is zero and the real part is negative since |cosy| < 1.
Therefore is X; is a symmetric stable process of index «,

]EeiuXt _ efc’t|u|a.

An exercise is to show that if @ > 0 and X; is a symmetric stable process
of index «, then X, and a/* X, have the same law.

By Exercise 6.7.4 of Chung’s book,
P(X; > A) ~cA™, A — o0, (2.7)

where f ~ g means the ratio of the two sides goes to 0.

—c't|ul™

Since e is integrable, X; has a continuous density function p;(x).

We have .
p(0) =5 [ (2.8)

:27r

and by a change of variables,
pe(0) = et~V (2.9)

If z # 0, then

1 —iux —c't|u|® 1 .. — e

r)=— [ e "¢ du = — [ (cosuz — isinuz)e " du.
pi(z) 27 / 27 ( )

Since sin uz is an odd function of u, the imaginary term is 0. Since cosuz < 1

and in fact is strictly less than 1 except at countably many values of u, we

see that

pe(z) < pi(0). (2.10)

If 8 < 1, we can take m(dz) = ¢/|z|'*? for > 0 and 0 for x < 0. We can
also take the Lévy-Khintchine exponent to be just [¢™* — 1] if we take the
drift term to cancel out the f iux 1(z/<1) term. This reflects that here we do
not need to subtract the mean to get convergence of the compound Poisson
processes. In this case we get the one-sided stable processes of index 3. The
paths of such a process only increase.

There is a notion of subordination which is very curious. Suppose that T;
is a one-sided stable process of index § with § < 1. Let W; be a Brownian
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motion independent of T;. Then Y; = Wy, is a symmetric stable process of
index 2. Let’s see why that is so.

That Y is a Lévy process is not hard to see. We must therefore calculate
the Lévy measure m. If P, is a Poisson process with parameter A, then

[ — = e

P - 7>\t<)‘t)k k Xt _ult At(e*—1)
Ee"t:Ze o “ et = e )

k=0
Using that the moment generating function of independent random variables

is the product of the moment generating functions and taking limits, we see

that

EefuTt — efcuﬁ

Then
EeYt = K /ewWSP(Tt € ds)

= / e~2P(T, € ds)
— E e*UQTt/Q
_ e—ct(u2/2)5

_ e—c’|u|25 )
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Chapter 3

Stochastic calculus

In this chapter we investigate the stochastic calculus for processes which
may have jumps as well as a continuous component. If X is not a con-
tinuous process, it is no longer true that X;,r, is a bounded process when
Ty = inf{t : | X;| > N}, since there could be a large jump at time T. We in-
vestigate stochastic integrals with respect to square integrable (not necessar-
ily continuous) martingales, 1t6’s formula, and the Girsanov transformation.
We prove the reduction theorem that allows us to look at semimartingales
that are not necessarily bounded.

We will need the Doob-Meyer decomposition, which can be found in Chap-
ter 16 of Bass, Stochastic Processes. That in turn depends on the debut and
section theorems. A simpler proof than the standard one for the debut and
section theorems can be found in the Arxiv:

http://arxiv.org/abs/1001.3619.

3.1 Decomposition of martingales

We assume throughout this chapter that {F;} is a filtration satisfying the
usual conditions. This means that each F; contains every P-null set and
NesoFrre = J for each t.

Let us with a few definitions and facts. The predictable o-field is the o-field
of subsets of [0, 00) X2 generated by the collection of bounded, left continuous
processes that are adapted to {F;}. A stopping time T is predictable and

35
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predicted by the sequence of stopping times T, if T,, T T, and T,, < T on
the event (7" > 0). A stopping time T is totally inaccessible if P(T'=S) =0
for every predictable stopping time S. The graph of a stopping time T is
[T,T) ={(t,w) : t = T(w) < co}. If X; is a process that is right continuous
with left limits, we set X, = lim,_; 3«4 X5 and AX; = X; — X;_. Thus AX;
is the size of the jump of X; at time ¢.

Let’s look at some examples. If W; is a Brownian motion and 7' = inf{t :
W, =1}, then T,, = inf{t : W, =1 — (1/n)} are stopping times that predict
T.

On the other hand, if P, is a Poisson process (with parameter 1, say, for
convenience), then we claim that 7" = inf{¢ : P, = 1} is totally inaccessible.
To show this, suppose S is a stopping time and S,, T S are stopping times
such that S,, < .S on (S > 0). We will show that P(S =T) = 0. To do that,
it suffices to show that P(S A N = T') = 0 for each positive integer N. Since
P, — t is a martingale, E Ps ,y = E (S, A N). Letting n — oo, we obtain
(by monotone convergence) that E Pigany— = E (S AN). We also know that
E Psan = E(SAN). Therefore E Pgan)— = E Pgan. Since P has increasing
paths, this implies that Pigan)— = Psan, and we conclude P(SAN = T') = 0.

In this chapter we will assume througout for simplicity that every jump
time of whichever process we are considering is totally inaccessible. The
general case is not much harder, but the differences are only technical.

A supermartingale Z is of class D if the family of random variables:
{Zr : T a finite stopping time}

is uniformly integrable.

Theorem 3.1 (Doob-Meyer decomposition) Let {F;} be a filtration satisfy-
ing the usual conditions and let Z be a supermartingale of class D whose paths
are right continuous with left limits. Then Z can be written Z, = M, — A,
in one and only one way, where M and A are adapted processes whose paths
are right continuous with left limits, A has continuous increasing paths and
Ao = limy_, Ay is integrable, and M is a uniformly integrable martingale

Suppose A; is a bounded increasing process whose paths are right contin-
uous with left limits. Recall that a function f is increasing if s < ¢ implies
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f(s) < f(t). Then trivially A; is a submartingale, and by the Doob-Meyer de-
composition, there exists a continuous increasing process A; such that A; — A,
is a martingale. We call A; the compensator of A;.

If Ay = By — C} is the difference of two increasing processes B; and Cj,
then we can use linearity to define A; as By — C;. We can even extend the
notion of compensator to the case where A; is complex valued and has paths
that are locally of bounded variation by looking at the real and imaginary
parts.

We will use the following lemma. For any increasing process A we let
AOO = hmt_>oo At'

Lemma 3.2 Suppose A; has increasing paths that are right continuous with
left limits, Ay < K a.s. for each t, and let By be its compensator. Then
E B% <2K?.
Proof. If M; = A; — By, then M, is a martingale, and then

E[My, — M, | F]=0.
We then write

EB;:mE/(Bx—&M&zﬁE/ E[Bo — B: | Fi] dB;
0 0

0 0

=2KE B, =2KE A, < 2K?.

From the lemma we get the following corollary.

Corollary 3.3 If A, = B, —C}, where By and Cy are increasing right contin-
uous processes with By = Cy = 0, a.s., and in addition B and C' are bounded,
then

E sup Z? < 00.
>0
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Proof. By a proposition, E B2 < oo and EC% < 0o, and so

E sup A2 < E [2sup B? + 2sup C?] < 2E B2 + 2E C2, < co.
>0 >0 >0

We are done. |
A key result is the following orthogonality lemma.

Lemma 3.4 Suppose A; is a bounded increasing right continuous process
with Ay = 0, a.s., A; is the compensator of A, and My = Ay — A;. Suppose N,
is a right continuous square integrable martingale such that (AN;)(AM,;) =0
for allt. Then E M N, = 0.

Proof. By Lemma 3.3, M is square integrable. Suppose
H(s,w) = K(w)l(a(s)

with K being F, measurable. Since M; is of bounded variation, we have (this
is a Lebesgue-Stieltjes integral here)

E/OOHSdMszE[K(Mb—Ma)]:IE[KIE[Mb—Ma|]-'a]]:O.

We see that linear combinations of such H'’s generate the predictable o-field.
Thus by linearity and taking limits, E fooo H,dM, =0 if H, is a predictable
process such that E [ |H,|[dM,| < co. In particular, since N,_ is left
continuous and hence predictable, [E fooo N,_dM,; = 0, provided we check
integrability:
B| [ V.-
0

<E [ (sup|N,[)[dM,|
0 r

) [(sgp IN,|) (Ao + Ax)] < 00

by the Cauchy-Schwarz inequality.

By hypothesis, E fooo ANgdM, = 0, so E fooo NydM, = 0. On the other
hand, using Proposition 1.17, we see

]EMOONOO:E/ NoodMszE/ Ny dM; = 0.
0 0
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The proof is complete. |

If we apply the above to Ny, we have E M, Ny = 0. If we then condition
on fT,
E [MrNy] =E[N7E[My, | Fr]] = E[NrMy] = 0. (3.1)

The reason for the name “orthogonality lemma” is that by (3.1), M;N; is
a martingale. This implies that (M, N), (which we will define soon, and is
defined similarly to the case of continuous martingales) is identically equal
to 0.

Let M; be a square integrable martingale with paths that are right con-
tinuous and left limits, so that E M2 < oo. For each i € Z, let Tj; = inf{t :
|AM,| € [27,271)}) Tip = inf{t > Ty : |AM,| € [2¢,2")}, and so on; i can
be both positive and negative. Since M, is right continuous with left limits,
for each ¢, Tj; — oo as j — oo. We conclude that M, has at most countably
many jumps. We relabel the jump times as S, 55, ... so that each Sy is
totally inaccessible, the graphs of the Sy are disjoint, M has a jump at each
time Sy and only at these times, and |[AMg, | is bounded for each k. We do
not assume that Si, < Sk, if k1 < ks, and in general it would not be possible
to arrange this.

If S; is a totally inaccessible stopping time, let
Ai(t) = AMSil(tZSi) (3.2)
and _
Mi(t) = Ai(t) — Ai(h), (3.3)

where g@ is the compensator of A;. A;(t) is the process that is 0 up to time
S; and then jumps an amount AMg,; thereafter it is constant. We know that
A is continuous. Note that M — M; has no jump at time .S;.

Theorem 3.5 Suppose M is a square integrable martingale and we define
M; as in (3.3).

(1) Each M; is square integrable.
(2) >0, M;(o0) converges in L.

(3) If Mf = My — > o2, M;(t), then M° is square integrable and we can
find a version that has continuous paths.
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(4) For each i and each stopping time T', E[MS$M;(T)] = 0.

Proof. (1) If S; is a totally inaccessible stopping time and we let B; =
(AMg,) 1>s,) and Cp = (AMsg,) " 1>s,), then (1) follows by Corollary 3.3.

(2) Let V,(t) = D", M;(t). By the orthogonality lemma (Lemma 3.4),
E [M;(c0)M;(c0)] = 0if i # j and E [M;(00)(Ms — Vi (00)] = 0if i <n. We
thus have

Z E M;(00)? = EV,(c0)?

<E [MOO . Vn(oo)r +E V;,(00)?

= E [ M~ Vi(o0) + Viloo)|
=E M2 < .

Therefore the series E Y1 | M;(00)? converges. If n > m,

E[(Va(oo) ~ V(o) =E[ 3 Mi(oo)r: S EMi(oo)?

This tends to 0 as n,m — oo, so V,(c0) is a Cauchy sequence in L? and
hence converges.

(3) From (2), Doob’s inequalities, and the completeness of L? the ran-
dom variables sup,o[M; — V,(t)] converge in L* as n — oo. Let My =
lim,, oo [M; — V,,(t)]. There is a sequence ny, such that

sup [(M; — V,,, (1)) — M| — 0, a.s.

t>0

We conclude that the paths of M are right continuous with left limits. By
the construction of the M;, M —V,, has jumps only at times S; for i > ny.
We therefore see that M€ has no jumps, i.e., it is continuous.

(4) By the orthogonality lemma and (3.1),
E [Mi(T)(Mr — Vo (T)] = 0

if T is a stopping time and ¢ < n. Letting n tend to infinity proves (4). O
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3.2 Stochastic integrals

If M; is a square integrable martingale, then M? is a submartingale by
Jensen’s inequality for conditional expectations. Just as in the case of con-
tinuous martingales, we can use the Doob-Meyer decomposition to find a pre-
dictable increasing process starting at 0, denoted (M),, such that M7 — (M),
is a martingale.

Let us define
(M), = (M€), + ) |AM,J. (3.4)

s<t

Here M€ is the continuous part of the martingale M as defined in Theorem
3.5. As an example, if M, = P, —t, where P, is a Poisson process with
parameter 1, then M = 0 and

[M],=> AP} =) AP,=P,

s<t s<t

because all the jumps of P, are of size one. In this case (M), = t; this follows
from Proposition 3.6 below.

In defining stochastic integrals, one could work with (M),, but the process
[M]; is the one that shows up naturally in many formulas, such as the product
formula.

Proposition 3.6 M? — [M]; is a martingale.

Proof. By the orthogonality lemma and (3.1) it is easy to see that
<M>t = <Mc>t + Z <M’L>t

Since M? — (M), is a martingale, we need only show [M], — (M), is a mar-
tingale. Since

(M= {0), = (M) + DT IAMLP) = (1, + 37 (M3),).

s<t

it suffices to show that >, (M;), — 3=, > -, [AM;(s)|* is a martingale.
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By an exercise

Mit)? = 2/0 Mi(s—) dMi(s) + 3 |AM(s) P, (3.5)

s<t

where the first term on the right hand side is a Lebesgue-Stieltjes integral. If
we approximate this integral by a Riemann sum and use the fact that M; is
a martingale, we see that the first term on the right in (3.5) is a martingale.
Thus M2(t) — .., |AM;(s)|? is a martingale. Since MZ(t) — (M;), is a
martingale, summing over i completes the proof. |

If H, is of the form

Hs(w) - Z Ki(w)l(ai,bi](s>a (36)
i=1
where each K is bounded and F,, measurable, define the stochastic integral
by

t n
N, = / H,dM, = ZKi[Mbi/\t — Mg nil.
0 i=1

Very similar proofs to those in the Brownian motion case (see Chapter 10 of
Bass, Stochastic Processes), show that the left hand side will be a martingale
and (with [-] instead of (-)), N2 — [N]; is a martingale.

If H is P-measurable and E [~ H? d[M], < oo, approximate H by inte-

s

grands H of the form (3.6) so that
E / (H, — HM?*d[M], — 0
0

and define N;' as the stochastic integral of H™ with respect to M,;. By
almost the same proof as that of the construction of stochastic integrals with
respect to Brownian motion, the martingales N converge in L?. We call
the limit N, = fot H,dM, the stochastic integral of H with respect to M. A
subsequence of the N™ converges uniformly over t > 0, a.s., and therefore
the limit has paths that are right continuous with left limits. The same
arguments as those for Brownian motion apply to prove that the stochastic
integral is a martingale and

M= [ mzan,



3.3. ITO’S FORMULA 43

A consequence of this last equation is that

E(/OtHdes>2 ~E /OtHfd[M]s. (3.7)

3.3 Ito’s formula

We will first prove [t0’s formula for a special case, namely, we suppose X; =
M, + A;, where M, is a square integrable martingale and A; is a process
of bounded variation whose total variation is integrable. The extension to
semimartingales without the integrability conditions will be done later in the
chapter (in Section 3.5) and is easy. Define (X°), to be (M¢),.

Theorem 3.7 Suppose X; = M, + A;, where M; is a square integrable mar-
tingale and A; is a process with paths of bounded variation whose total vari-
ation is integrable. Suppose f is CZ on R. Then

FOX) = F(Xo) + / F(X)dX, 4+ L / FX) X, (38)
(X)) — [ (X)AX,).

s<t

Proof. The proof will be given in several steps. Set

_ / X )dx., / F1(X,)d(xe),,

J(t) = Z[f(Xs) - f(Xs—) - f/(Xs—)AXs]'

s<t

and

PR3

We use these letters as mnemonics for “stochastic integral term,
variation term,” and “jump term,” resp.

quadratic

Step 1: Suppose X; has a single jump at time 7" which is a totally inac-
cessible stopping time and there exists N > 0 such that |[AM7|+|AAr| < N
a.s.
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Let Cy = AMrl>7) and let Ct be the compensator. If we replace M; by
—Cy+ C’t and A; by A; +C; — C’t, we may assume that M; is continuous.

Let B; = AXplgsr). Set X; = X; — B, and A, = A, — B,. Then
X, =M, + A; and X, is a continuous process that _agrees with X; up to but

not including time 7. We have X, = X, and AX; =0 if s <T. By Ito’s
formula for continuous processes,

(% /f dX+/f”

= R+ [ PR af ) / PR AT,
+ YLK = f(Xe) = f(X)AK],
s<t
since the sum on the last line is zero. For ¢t < T, )A(t agrees with X;. At time
T, f(X;) has a jump of size f(Xr) — f(Xr_). The integral with respect to
X, S(t), will jump f'(X7r-)AXr, Q(t) does not jump at all, and J(¢) jumps
f(X7) — f(Xr-) — f(Xr-)AXp. Therefore both sides of (3.8) jump the
same amount at time 7', and hence in this case we have (3.8) holding for

t<T.

Step 2: Suppose there exist times T} < 15 < --- with T,, — oo, each T;

is a totally inaccessible stopping time stopping time, for each 7, there exists
N; > 0 such that |[AMr,| and |AAr,| are bounded by N;, and X is continuous
except at the times 17,75, .... Let Ty = 0.

Fix 7 for the moment. Define X = X(;_r,)+, define Aj and M similarly,
and apply Step 1 to X’ at time T; +t. We have for T; <t < T;

F(X)) = f(Xz,) /f )dX, +1 /f” (X,
+ > f (Xo-) = f1(Xom)AX).

T;<s<t

Thus for any ¢t we have
F(Xn00) = Xm0 + [
Tint

+ > (X)) = f(X) = f(XO)AX)

Tint<s<Tj11At

Tir 1Nt Tir1iNt

f(Xe)dX, + ) / (X0 d(xe),

TiNt
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Summing over i, we have (3.8) for each ¢.

Step 3: We now do the general case. As in the paragraphs preceding
Theorem 3.5, we can find stopping times Si, Ss,... such that each jump of
X occurs at one of the times S; and so that for each i, there exists N; > 0
such that |[AMsg,| + |AAg,| < N;. Moreover each S; is a totally inaccessible
stopping time. Let M be decomposed into M€¢ and M; as in Theorem 3.5
and let

Af= A =) AAglyss,.
i=1

Since A; is of bounded variation, then A€ will be finite and continuous. Define
M} = M;+) " M(t)
i=1

and .
Al =AY+ Z AASil(tESi)’

i=1
and let X' = M} + A?. We already know that M"™ converges uniformly
over t > 0 to M in L* If we let By = Y. (AAg)T1yss, and CF =
Yo (AAg,) 1uss,) and let By = sup, By, Cy = sup,, C}', then the fact that
A has paths of bounded variation implies that with probability one, Bj* — B,
and C}" — C} uniformly over ¢t > 0 and A; = B; — (). In particular, we have
convergence in total variation norm:

B [ ldean) Al 0.

We define S™(t), Q™(t), and J"(t) analogously to S(t), Q(t), and J(t),
resp. By applying Step 2 to X™, we have

FX7) = F(Xg) +5™(8) + Q"(t) + J" (1),

and we need to show convergence of each term. We now examine the various
terms.

Uniformly in ¢, X' converges to X; in probability, that is,

P(sup | X' — Xy| >¢) =0

t>0
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as n — oo for each € > 0. Since fot d(MF¢), < oo, by dominated convergence

[ oo, - [ roaon,

in probability. Therefore Q"(t) — Q(t) in probability. Also, f(X}") — f(X})
and f(Xo) — f(Xp), both in probability.

We now show S™(t) — S(t). Write

L/ FX™ ) dAT — /nf
[ [ ey - / ) dA)
w[ [ roman- [ o

— I+ I3

We see that .
<17 [ ldaz = a0
0

as n — oo, while by dominated convergence, |I}'| also tends to 0.

We next look at the stochastic integral part of S™(t).
[ o - [ o
:(/fX”MW /f dM”
o o= [l

=13+ 1.
The L? norm of I} is bounded by
t t
B [ 1FO0) ~ PGP B [ 17O - £GP ).
0 0

which goes to 0 by dominated convergence. Also

= [y 3 a

1=n-+1
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so using the orthogonality lemma (Lemma 3.4), the L? norm of I} is less
than

1F12% > EMle < 115 D EMi(oo)?,
i=n—+1 i=n+1
which goes to 0 as n — oo.

Finally, we look at the convergence of J". The idea here is to break
both J(t) and J"(¢) into two parts, the jumps that might be relatively large
(jumps at times S; for i < N where N will be chosen appropriately) and the
remaining jumps. Let N > 1 be chosen later.

J(t) = J"(t) =) _[f(Xs) = f(Xeo) = f(XD)AX,]

SJ_ ;[f(X;‘) — (X)) = fI(XL)AXY]
) {.;j}[f(Xsl) — f(Xs-) = f1(Xs-)AX)]
_ ';t [f(X5,) — f(X5_) — f1(X5_)AXg)]
= Nz{é;[;(){&) — f(Xs,-) = [[(Xs,-)AX)]
{ >_ .{;Nz};q}m){&) — J(X5,0) = f{(X5,)AXE]
: {-<NZ;<t} {[f(Xsi) — f(Xso) = [1(Xs-)AX)]

—[F(XE) — F(XE) — f/(X5)AXE]]
=1 — 13N+ 1V,
By the fact that M and A are right continuous with left limits, |[AMg,| <

1/2 and |AAg,| < 1/2 if i is large enough (depending on w), and then
|AXg | <1, and also

|AX51|2 < 2|AM51|2 + 2|AASZ|2
< Q‘AMSilz + ‘AASz’
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We have
I < e Y (AXg)?

i>N,S; <t

and

Y <0 Y. (AXs)

n>i>N,S; <t

Since > 57 |AMg,|* < [M]w < 00 and > o) |AAg,| < 0o, then given € > 0,
we can choose N large such that

P(I| + |15 > ) <e.

Once we choose N, we then see that ]?’N tends to 0 in probability as n — oo,
since X' converges in probability to X; uniformly over ¢ > 0. We conclude
that J"(t) converges to J(t) in probability as n — oo.

This completes the proof. |

3.4 The reduction theorem

Let M be a process adapted to {F;}. If there exist stopping times 7}, increas-
ing to oo such that each process M;,r, is a uniformly integrable martingale,
we say M is a local martingale. If each M7, is a square integrable martin-
gale, we say M is a locally square integrable martingale. We say a stopping
time T" reduces a process M if My r is a uniformly integrable martingale.

Lemma 3.8 (1) The sum of two local martingales is a local martingale.
(2) If S and T both reduce M, then so does SV T.

(3) If there exist times T,, — oo such that My, is a local martingale for
each n, then M 1is a local martingale.

Proof. (1) If the sequence S,, reduces M and the sequence 7;, reduces N,
then S,, A T,, will reduce M + N.

(2) Minsvry is bounded in absolute value by |Miar| 4+ |[Mias|. Both
{|Mirr|} and {|M;ps|} are uniformly integrable families of random variables.
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Now use that the sum of two uniformly integrable families is uniformly inte-
grable.

(3) Let S,m be a family of stopping times reducing M;,r,, and let S/ ==
Spm A T,,. Renumber the stopping times into a single sequence Rq, Rs, . ..
and let H, = Ry V ---V Ry. Note Hy T oo. To show that Hy reduces M, we
need to show that R; reduces M and use (2). But R; = S),, for some m,n,
s0 Miag, = Mips,,.~1, is @ uniformly integrable martingale. O

Let M be a local martingale with My = 0. We say that a stopping time
T strongly reduces M if T reduces M and the martingale E[|Mp| | F] is
bounded on [0,7"), that is, there exists K > 0 such that

sup B[|Mz| | F]< K, as.

0<s<T

Lemma 3.9 (1) If T strongly reduces M and S < T, then S strongly reduces
M.

(2) If S and T strongly reduce M, then so does SV T.
(3) If Yoo is integrable, then E[E Yo | Fr] | Fs] = E [Yao | Fonr]-

Proof. (1) Note E[|Ms| | Fs] <E[|Mr| | Fs] by Jensen’s inequality, hence
S strongly reduces M.

(2) It suffices to show that E [|Mgsyr| | Fi] is bounded for t < T, since by
symmetry the same will hold for t < S. For ¢t < T this expression is bounded
by

E[[Mr| | 7]+ E[|Ms|Ls>r) | Fi)-

The first term is bounded since T strongly reduces M. For the second term,
ift<T,

Lo E[|[Ms|Lissry | Fe) = E[|Ms|lss1)li<ry | Fi
<E[|Ms|1u<s) | Fi]
=E[|Ms| | Filli<s),

which in turn is bounded since S strongly reduces M.
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(3) Let Y; be the right continuous version of E [X | F;]. We thus need to
show that E [Ys | Fr] = Ysar. The right hand side is Fg,r measurable and
Fsar C Fr. We thus need to show that if A € Fr, then

E [YS; A] =E [YS/\T; A]

Let B = (S <T). We will show
E[Ys; AN B] = E [Yspr; AN B (3.9)

and
E[YS;Aﬂ BC] = E[YS/\T;AQBC] (310)

Adding (3.9) and (3.10) will achieve our goal.

Since Ys = Ygar on B, the right hand side of (3.9) is equal to E [Ys; AN B
as required.

For (3.10), S > T on B¢, s0 S =SV T on B°. Also ANB° € Fr C Fgyr.
Since Y is a martingale,

E[Ys; AN B =E[Ysyr; AN B = E[Yp; AN B = E [Ysur; AN B,

which is (3.10)

Lemma 3.10 If M is a local martingale with My = 0, then there exist stop-
ping times T}, T oo that strongly reduce M.

Proof. Let R, T oo be a sequence reducing M. Let
Spm = Rp ANnf{t : E[|Mg,| | ;] > m}.

Arrange the stopping times S, into a single sequence {U,} and let T,, =
Uy V---VU,. In view of the preceding lemmas, we need to show U; strongly
reduces M, which will follow if S, does for each n and m.



3.4. THE REDUCTION THEOREM ol

Let Y; = E[|Mpg,| | Fi], where we take a version whose paths are right
continuous with left limits. Y is bounded by m on [0, S,,,). By Jensen’s
inequality for conditional expectations and Lemma 3.9

E[[Ms,,[Li<sum) | Fil SE[[E[[Mg,] | Fspnlllt<sm) | Fil
=E[E[|Mg,|1¢<Smm) | Fsuml | Fil
=E[|Mg,|1t<Smm) | FSunmnt]

- YSnm/\t]‘(t<Snm)
= Y;fl(t<5nm) S m.

We used that 1<g,,,) is Fs,,. ¢ measurable; to see that we have by Lemma
3.9(3) that

E[1t<Spm) | Fspmnt]l = E[E 1) | Fsuml | Fil = E s | Fil

= ]' (t<Sn7n) *

We are done. |
Our main theorem of this section is the following.

Theorem 3.11 Suppose M is a local martingale. Then there exist stopping
times T,, T oo such that My, = U + V", where each U" is a square
integrable martingale and each V™ is a martingale whose paths are of bounded
variation and such that the total variation of the paths of V, is integrable.
Moreover, Uy = Uy, and V* = V1 fort >T,.

The last sentence of the statement of the theorem says that U™ and V"
are both constant from time 7}, on.

Proof. It suffices to prove that if M is a local martingale with My = 0 and
T strongly reduces M, then M; 1 can be written as U + V with U and V'
of the described form. Thus we may assume M; = My for t > T, |My| is
integrable, and E [ |M7| | F;] is bounded, say by K, on [0, 7).

Let Ay = Mrlysry = Mily>r), let A be the compensator of A, let V =
A— Av, andlet U = M —A+A. ThenV is a martingale of bounded variation.

We compute the expectation of the total variation of V. Let B, = M Liesm)
and Cy = My 1y>7). Then the expectation of the total variation of A is
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bounded by E |Mr| < oo and the expectation of the total variation of Ais
bounded by

E By +ECy =E By +ECy <E|My| < 0.

We need to show U is square integrable. Note

My — Ay| = |My|1gery = |E [My | Fi) |1p<n)
= |E[E [Mw | Frul | Fe][1e<r) = [E [Mrvi | Fi] [L<r)
= |E[Mr | ] [Lo<r) < E[|M7| | F]lo<r) < K.

Therefore it suffices to show A is square integrable.

Our hypotheses imply that E [M; | F¢] is bounded by K on [0,T'), hence
E[Bs — By | F is bounded, and so E B2 < oco. Similarly, EC2 < c.
Since A = B — C, then A=DB- C and it follows that sup;sq A, is square
integrable. |

3.5 Semimartingales

We define a semimartingale to be a process of the form X; = X+ M; + A,
where X is finite, a.s., and is Jy measurable, M, is a local martingale, and
A; is a process whose paths have bounded variation on [0, ¢] for each ¢.

If M, is a local martingale, let T,, be a sequence of stopping times as in
Theorem 3.11. We set My, = (U")f for each n and

[M]t/\Tn = <Mc>t/\Tn + Z AMSZ
s<tATy,

It is easy to see that these definitions are independent of how we decompose
of M into U™ + V"™ and of which sequence of stopping times 7}, strongly
reducing M we choose. We define (X¢), = (M*¢), and define

[(X]e = (X, + > AXZ.

s<t

We say an adapted process H is locally bounded if there exist stopping
times S, T oo and constants K, such that on [0, .S,] the process H is bounded
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by K,. If X, is a semimartingale and H is a locally bounded predictable
process, define fg H,dX, as follows. Let X; = Xo+ M; + A;. If R, =
T, N S,, where the T, are as in Theorem 3.11 and the S,, are the stopping
times used in the definition of locally bounded, set fot N\Fin H,dM, to be the

stochastic integral as defined in Section 3.2. Define fOtAR" H,dA, to be the
usual Lebesgue-Stieltjes integral. Define the stochastic integral with respect
to X as the sum of these two. Since R, 1 0o, this defines f(f H,dX, for all t.
One needs to check that the definition does not depend on the decomposition
of X into M and A nor on the choice of stopping times R,,.

We now state the general [t6 formula.

Theorem 3.12 Suppose X is a semimartingale and f is C?. Then

F(X0) = F(Xo) /f dX,+ ] /f” (X9,
+) [f(X X,) — f'(X,0)AX,).

s<t

Proof. First suppose f has bounded first and second derivatives. Let T,
be stopping times strongly reducing M, let S,, = inf{t : fg |dAs| > n}, let
R,=T,ANS,, and let X]' = X g, — AAg,. Since the total variation of A,
is bounded on [0, R,), it follows that X" is a semimartingale which is the
sum of a square integrable martingale and a process whose total variation
is integrable. We apply Theorem 3.7 to this process. X;* agrees with X; on
[0, R,). As in the proof of Theorem 3.7, by looking at the jump at time R,
both sides of [t0’s formula jump the same amount at time R,,, and so [t0’s
formula holds for X; on [0, R,]. If we now only assume that f is C?, we
approximate f by a sequence f,, of functions that are C? and whose first and
second derivatives are bounded, and then let m — oco; we leave the details
to the reader. Thus Itd’s formula holds for ¢ in the interval [0, R, and for
f without the assumption of bounded derivatives. Finally, we observe that
R, — o0, so except for a null set, It6’s formula holds for each t. O

The proof of the following corollary is similar to the proof of [t0’s formula.
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Corollary 3.13 If X; = (X},..., X?) is a process taking values in R? such
that each component is a semimartingale, and f is a C? function on R?, then

t d af .
F(X)) = f(Xo) + 0 Zam(Xs,)dXs
t 52 . .
+%/0 | GMJ;(XS_)d<(X’)C,(XJ)C>S

where (Y, Z), = %[(Y +2), —(Y), — (Z),).
If X and Y are real-valued semimartingales, define
(X, Y]e = 5([X + Y] — [X]e = [Y]). (3.11)

The following corollary is the product formula for semimartingales with
jumps.

Corollary 3.14 If X and Y are semimartingales of the above form,

t t
Xth:XOYOJr/ Xs_dYer/ Y, dXs+ [X,Y];.
0 0

Proof. Apply Theorem 3.12 with f(z) = 2?. Since in this case
f(Xo) = f(Xeo) = f(XD)AX, = AXZ,

we obtain

t
X} = X2+ 2/ X, dX, + [X];. (3.12)
0
Applying (3.12) with X replaced by Y and by X + Y and using
XpYy = 3[(X; + Y2 = X7 = ¥/

gives our result. |
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3.6 The Girsanov theorem

Let P and Q be two equivalent probability measures, that is, P and Q are
mutually absolutely continuous. Let M., be the Radon-Nikodym derivative
of Q with respect to P and let M, = E[M,, | F;]. The martingale M, is
uniformly integrable since M., € L'(P). Once a non-negative martingale
hits zero, it is easy to see that it must be zero from then on. Since Q and P
are equivalent, then M, > 0, a.s., and so M, never equals zero, a.s. Observe
that Mr is the Radon-Nikodym derivative of Q with respect to P on Fr.

If A e F;, we have
Q(A) = Ep[Mu; A] = Ep[My; A],
using that M is a martingale.

Theorem 3.15 Suppose X is a local martingale with respect to P. Then
X; — Dy is a local martingale with respect to Q, where

t
1
D, = d| X, M.
t /OVMS [ Y ]

Note that in the formula for D, we are using a Lebesgue-Stieltjes integral.

Proof. Since Eo[X; — Dy; A] = Ep[My(X; — D;); A] it A € F; and the same
with ¢ replaced by s, it suffices to show that M;(X; — D;) is a local martingale
with respect to P. By Corollary 3.14,

d(M(X - D))t — (X - D)t— th + Mt— dXt - Mt— th
+d[M, X — Dl,.

The first two terms on the right are local martingales with respect to IP. Since
D is of bounded variation, the continuous part of D is zero, hence

t
[M, D], =Y  AM,AD, = / AM, dD;.
0

s<t

Thus
t
M(X; — D;) = local martingale + [M, X]; — / M, dDg.
0

Using the definition of D shows that M;(X; — D;) is a local martingale. ©
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Chapter 4

Stochastic differential equations

4.1 Poisson point processes

Poisson point processes are random measures that are related to Poisson
processes. Poisson point processes are also useful in the study of excursions,
even excursions of a continuous process such as Brownian motion, and they
arise when studying stochastic differential equations with jumps.

Let S be a metric space, G the collection of Borel subsets of S, and X\ a
measure on (S, G).

Definition 4.1 We say a map
N:Qx[0,00) xG—{0,1,2,...}
(writing Ny(A) for N(w,t, A)) is a Poisson point process if

(1) for each Borel subset A of S with AM(A) < oo, the process Ni(A) is a
Poisson process with parameter A(A), and

(2) for each t and w, N(t,-) is a measure on G.

A model to keep in mind is where & = R and A is Lebesgue measure. For
each w there is a collection of points {(s,z)} (where the collection depends
on w). The number of points in this collection with s <t and z in a subset
A is Ny(A)(w). Since A(R) = oo, there are infinitely many points in every
time interval.

57
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Another example is to let X be a Lévy process and let Ny(A) be the
number of jumps of size A before time t. A consequence of the definition is
that since A\(()) = 0, then N;(() is a Poisson process with parameter 0; in
other words, N;()) is identically zero.

Our main result is that N;(A) and N;(B) are independent if A and B are
disjoint.

Theorem 4.2 Let {F;} be a filtration satisfying the usual conditions. Let S
be a metric space furnished with a positive measure \. Suppose that Ny(A)
is a Poisson point process with respect to the measure . If Ay,..., A, are
patrwise disjoint measurable subsets of S with \(Ay) < oo for k =1,...,n,
then the processes Ny(Ay), ..., Ni(A,) are mutually independent.

This is proved exactly the same way we proved that Ny(A) and N;(B) are
independent in the study of Lévy processes.

We now turn to stochastic integrals with respect to Poisson point pro-
cesses. In the same way that a non-decreasing function on the reals gives
rise to a measure, so N;(A) gives rise to a random measure p(dt,dz) on the
product o-field B0, 00) x G, where B0, o0) is the Borel o-field on [0, 00); 1
is determined by

u([0,1] x A)(w) = Ni(A) (@);
Define a non-random measure v on B[0,00) x G by v([0,t] x A) = tA(A) for
AegG. I AA) < oo, then u([0,¢] x A)—v(]0,t] X A) is the same as a Poisson
process minus its mean, hence is locally a square integrable martingale.

We can define a stochastic integral with respect to the random measure
p — v as follows. Suppose H(w, s, 2) is of the form

H(w,s,z) = ZKi(w)l(%bi](s)lAi(z), (4.1)

where for each ¢ the random variable K is bounded and F,, measurable and
A; € G with A\(4;) < co. For such H we define

N, = /Ot/H(w7 s,2)d(u — v)(ds,dz) (4.2)
= > Kill = v)((as b] 0 [0.2) x A)).
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Let us assume without loss of generality that the A; are disjoint. It is not
hard to see that V; is a martingale, that N¢ = 0, and that

N], = /0 t / H(w, s, 2)2 p(ds, d). (4.3)

Since (IN), must be predictable and all the jumps of NV are totally inaccessible,
it follows that (N), is continuous. Since [N]; — (N), is a martingale, we
conclude

t t

(N), = /{:/H(w, s,2)? v(ds,dz). (4.4)

Suppose H (s, z) is predictable process in the following sense: H is measur-
able with respect to the o-field generated by all processes of the form (4.1).
Suppose also that

E /OOO/SH(S,Z)QV(ds,dz) < 0.

Take processes H™ of the form (4.1) converging to H in the space L? with
norm (E [° [ H?dv)"/?. The corresponding N;* = f(f H"(s,z)d(p —v) are
casily seen to be a Cauchy sequence in L?, and the limit N, we call the
stochastic integral of H with respect to u — v. As in the continuous case, we
may prove that E N? = E[N], = E (N),, and it follows from this, (4.3), and
(4.4) that

[N]t:/ot/SH(s,z)zu(ds,dz), (N)t:/ot[SH(s,z)Zy(ds,dz). (4.5)

One may think of the stochastic integral as follows: if p gives unit mass to
a point at time t with value z, then N; jumps at this time ¢ and the size of
the jump is H(t, 2).

4.2 The Lipschitz case

We consider the the stochastic differential equation (SDE)

X = x9 +/0 /F(Xs, 2)[u(dz, ds) — v(dz, ds)]. (4.6)
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Theorem 4.3 Suppose there is a constant ¢ such that

/sup F(z,2)* Mdz) < o0

x

and
/ F(z,2) - F(y, 2) Mdz) < clz — ylP.

Then there ezists a solution to (4.6) and the solution is pathwise unique.

Proof. Let X? =z and define

XM = a2 +/ / p(dz,ds) — v(dz, ds)].
X™ is a martingale, and by Doob’s inequality,

E sup| X"t — X71? < 4R | X — X2
s<t
t
4R / (P(X™ ., 2) — F(X™, 2)[2 \(d2) ds
0

t
<dc [ |X" — XM ds.
0

If we let
gn(t) =K sup |X? - X:_1|27

s<t

we then have ,
ga(t) < A / G (s) ds.
0

Since g; is easily seen to be bounded, say, by B, we have by induction that
g2(t) < ABt, g3(t) < A2Bt?/2, and so on, and therefore

Zg 1/2

It follows that ) sup,, | X7 — X~!| converges in L?, and it is routine to see
that therefore X; = lim X exists and is the solution to (4.6).
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If X and Y are two solutions and g(t) = E sup,, | X, — Y;|*, we obtain
similarly that

s<af g(s) ds.

We may also assume that ¢ is bounded by B for ¢ < t;. We then obtain
g(t) < ABt, g(t) < A2Bt?/2!, and so on, and therefore g must be identically
zero, or we have pathwise uniqueness. O

4.3 Analogue of Yamada-Watanabe theorem

Our main result in this section is the analogue of the Yamada-Watanabe
condition for diffusions. We suppose X is a symmetric stable process of
index « € (1,2) and look at the equation

AV, = F(V,_) dX,. (4.7)

Theorem 4.4 Suppose o € (1,2), suppose F' is bounded and continuous, and
suppose p is a nondecreasing continuous function on [0, 00) with p(0) = 0 and

|[F(z) = F(y)| < p(lz —yl) for all z,y € R. If
/ ! dr = oo, (4.8)
0

then the solution to the SDE (4.7) is pathwise unique.

We normalize our symmetric stable processes so that > _, L{ax,jeay 1s a
Poisson process with parameter [, [y|~'~*dy.

Recall (2.8), (2.9), and (2.10).

Suppose X; is a symmetric stable process of index a € (1,2). We define
the Poisson point process u by

(A % [0,1]) ZlAAX

s<t
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the number of times before time ¢ that X; has jumps whose size lies in the
set A. We define the compensating measure v by

V(A) = E (A x [0,1]) :/Am%dx.

Set
Lf(z)= /[f(x +w) — f(z) = f'(zx)w] w7 dw (4.9)

for CZ functions f, where C? is the set of C? functions f such that f, f, and
f" are bounded. There is convergence of the integral for large w since a > 1.
There is convergence for small w by using Taylor’s theorem and the fact that
o< 2.

For C? functions £ coincides with the infinitesimal generator of X. Let
us explain this further.

If X; is a Lévy process with Lévy measure m, then
Eeiu(Xt+a:) _ eiuz — eiux (E eiUXt _ 1) — eiux (@tf[eiuh—l_i“hluh\gl)]m(dh) o 1)

Dividing by ¢ and letting ¢ — 0,

E w(Xetx) _ jiux ) )
lim —* € /[e“m — 1 — duhlp<y] m(dh).

t—0 t
Replacing u by —u, multiplyng by %f(u), and integrating u over R, we get

Ef(Xi+2)— f(z)

lim : — [+~ @) ~hf @)1gc] midh) = Lf(o)
IGES R

provided f € C%, the collection of C? functions such that f, f’, and f” are
bounded and provided one shows that it is valid to interchange the limit with
the integral in two places (it is).

There is a slight discrepancy here in the definition of £. We use that
for a € (1,2) and m(dw) = |w|~0* dw, we have that [ w1 m(dw) is
integrable and equals 0.
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Let -
Grf(x) = / P, f(x) ds
0

where P, f(z) = E f(Xs + x). We have
P,Gyf(z) = /OOO e P, f(x)ds = eM /000 e AP f(x)ds
=M /00 e P, f(z)ds
t
= (eM—1) /00 e M P, f(x)ds + /OO e M P, f(x)ds.
t t

So

PGAf(r) = Gyf(x) M1

. =— /too e P, f(zx)ds — /Ot e P, f(x)ds.

Since Psf(z) = E f(Xs + ) — f(x) as s — 0, we obtain
LGy f(x) = AG\f(x) — f(2).

Proposition 4.5 Suppose « € (1,2), f is in CZ, and

t
Z :/ H,dX,,
0

where H; is a bounded predictable process. Then

F(Z) = [(Z0) + M, + / H|"Lf(Z,)ds, (4.10)

where M, 1s a martingale.

Proof. Let X' = ) _, AX 1jax,<n and Y* = X; — X Then X' is a
Lévy process with symmetric Lévy measure which is equal to v on [—n,n]
and 0 outside this interval. Hence X' is a square integrable martingale and
SO fot H,dX? is also a square integrable martingale since H is bounded. On
the other hand

t
E ) / H,dY"
0

< [ HlloE Y IAX[Lax,5n) < 00

s<t
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because o € (1,2). The right hand side tends to 0 as n — oo by dominated
convergence. Therefore Z; is the L' limit of the square integrable martingales
fot H,dX™, and it follows that Z; is a martingale.

Write K (s,y) for [f(Zs—+Hsy) — f(Zs—) — f'(Zs—)Hsy|. Note that AZ, =
H,AX,. Note also that |K(s,y)| is bounded by a constant times (|y| A y?).
If f € CZ, we have by Ito’s formula that

12 = 1)+ [ FZ7+ () - 12) - £12)57)

s<t

— f(7) + / (2 )iz, + / t [ K putdy.ds)
= 1)+ e+ [ [ KGwtdis,

where
Vo= [ #azs [ [ Kt s vt

The first term on the right is a martingale by the argument of the first
paragraph of this proof. For each m we have then that f|y|<m K(s,y)*v(dy)
is bounded, and so for each m -

wir= [ Ky, as) — vy
0 Jlyl<m

is a martingale. Since WF — W™ is a martingale for each k, then

e[ [ . ) vl)a) < [ | vt

—«
S Comm 3

where ¢; and ¢y are positive finite constants not depending on m or k. Letting
k — oo, we see that

e | t / R0+ ())<=

Therefore M, is the limit in L' of the martingales fot f(Zs-)dZs + W], and
hence is itself a martingale.
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We make the change of variable w = H,y. Since y — H,y is monotone if
Hg # 0 we have that the integral with respect to v(dy) is

dy
|y |1

/ F(Zue + Hap)—f(Ze) — f/(Z ) Hay)

— U205 w) = 1(20) = § 2l ],
= |H"Lf(Z, )

if Hy # 0. This equality clearly also holds when Hy = 0. We therefore arrive
at (4.10). O

We note for future reference that we have shown (take Hy = 1 a.s.) that
f(Xy) — fo Lf(X,)ds is a martingale if f € C?.

We now prove Theorem 4.4.
Proof of Theorem 4.4. Let Y! and Y? be any two solutions to (4.7), let
Zy =Y, — Y2 and let H, = F(Y;') — F(Y2). Then Z, = [, H,dX,.

Let a,, be numbers decreasing to 0 so that faa"H p(x)~“dxr = n. For each n

let h,, be a nonnegative C? function with support in [a,1, a,] whose integral
is 1, and with h,(z) < 2/(np(x)*). This is possible since

/a” 1/ (np(z)®)dz = 1.

an+1

Fix A > 0, let g\(z fo Aty ( :c 0)dt, where p,(x,y) is the transition
density for X;, and let G A (x f f(y)ga(x—1y)dy. We have shown that that
ga(z) is bounded, and is contlnuous in z. Furthermore, g)(x) < ¢(0) if x # 0.
Let f.(xz) = G\h,(z). By interchanging differentiation and integration and
using translation invariance, f, is in C? since h,, is C?.

Define A, = [ |H,|*ds. By Ito’s product formula,

E e_AAt fn(Zt) - fn(())

t t
=E / e Med[f,(Z,)] - E / e M)
0 0
t t
=E / e M Hy|*Lfo(Z, )ds — E / e Ma)\
0 0

Hy|*f.(Zs-)ds

H,|° f(Z_)ds.
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Since Lf, = LG\h,, = \G\h,, — h,, = \f,, — h,,, we have

fu(0) —Ee™f,(Z,) =E / t e M| Hy|*hy, (Z,_)ds.
0

Note |Hy| < p(|Zs-|), so using our bound for h,,, the right hand side is less
than 2¢/n in absolute value, which tends to 0 as n — oo. The measures
hn(y)dy all have mass 1 and they tend weakly to point mass at 0. Since gy
is continuous in x, then f,(z) — gx(z) as n — co. We conclude

gx(0) — Ee_Mtg,\(Zt) =0.

We noted above that gy(z) < gA(0) if  # 0, while clearly A; < oo since F is
bounded. We deduce P(Z; = 0) = 1. This holds for each ¢, and we conclude
that Z is identically 0. |

Remark 4.6 The above proof breaks down for a = 1 since g, is no longer
a bounded function.



Chapter 5

The space D|0, 1]

5.1 Convergence of probability measures

We suppose we have a sequence of probabilities on a metric space S and we
want to define what it means for the sequence to converge weakly. Alter-
nately, we may have a sequence of random variables and want to say what it
means for the random variables to converge weakly.

For now our state space is assumed to be an arbitrary metric space, al-
though we will soon add additional assumptions on S. We use the Borel
o-field on &, which is the o-field generated by the open sets in S. We write
A% A, and OA for the interior, closure, and boundary of A, resp.

5.2 The portmanteau theorem

Clearly the definition of weak convergence of real-valued random variables
in terms of distribution functions has no obvious analog. The appropriate
generalization is the following.

Definition 5.1 A sequence of probabilities {P,} on a metric space S fur-
nished with the Borel o-field is said to converge weakly to P if [ fdP, —
[ fdP for every bounded and continuous function f on S. A sequence of
random variables {X,} taking values in S converges weakly to a random
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variable X taking values in S if E f(X,,) — E f(X) whenever f is a bounded
and continuous function.

Saying X,, converges weakly to X is the same as saying that the laws of
X, converge weakly to the law of X. To see this, if P, is the law of X,,, that
is, P, (A) = P(X,, € A) for each Borel subset A of S, then E f(X,,) = [ fdP,
and E f(X) = [ fdP. (This holds when f is an indicator by the definition
of the law of X, and X, then for simple functions by linearity, then for
non-negative measurable functions by monotone convergence, and then for
arbitrary bounded and Borel measurable f by linearity.)

The following theorem, known as the portmanteau theorem, gives some
other characterizations of weak convergence. For this chapter we let

Fs={z:d(z, F) <} (5.1)

for closed sets F, the set of points within ¢ of F', where d(z, F') = inf{d(z,y) :
ye F}.

Theorem 5.2 Suppose {P,,,n =1,2,...} and P are probabilities on a metric
space. The following are equivalent.

(1) P, converges weakly to IP.

(2) limsup,, P,,(F) < P(F) for all closed sets F.

(3) liminf, P,(G) > P(G) for all open sets G.

(4) lim, P,(A) = P(A) for all Borel sets A such that P(0A) = 0.

Proof. The equivalence of (2) and (3) is easy because if F' is closed, then
G = F*is open and P,(G) =1 —P,(F).

To see that (2) and (3) imply (4), suppose P(0A) = 0. Then

limsup P, (A) < limsup P, (A) < P(A)

n

= P(A°%) <liminfP,(A% < liminfP,(A).

Next, let us show (4) implies (2). Let F' be closed. If y € OF;s, then
d(y, F') = 0. The sets 0F; are disjoint for different . At most countably
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many of them can have positive P-measure, hence there exists a sequence
0x 4 0 such that P(0F;,) = 0 for each k. Then

limsup P, (F) < limsup P, (Fs,) = P(Fs,) = P(F5,)

n

for each k. Since P(Fy,) | P(F) as 6 — 0, this gives (2).

We show now that (1) implies (2). Suppose F'is closed. Let ¢ > 0. Take
§ > 0 small enough so that P(F5) — P(F) < . Then take f continuous, to
be equal to 1 on F, to have support in Fs, and to be bounded between 0 and
1. For example, f(z) =1— (1 Ad~'d(x, F)) would do. Then

limsup P, (F') Slimsup/deP’n :/deP
< P(F5) <P(F) +e.

Since this is true for all €, (2) follows.

Finally, let us show (2) implies (1). Let f be bounded and continuous. If
we show

lim sup / fdP, < /fd]P, (5.2)

for every such f, then applying this inequality to both f and — f will give (1).

By adding a sufficiently large positive constant to f and then multiplying by

a suitable constant, without loss of generality we may assume f is bounded
and takes values in (0,1). Let F; = {x: f(x) > i/k}, which is closed.

I
>+
—_
=B
s
&>
|
-
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Similarly,
k
1
dp > — P(F;
J 5= R
Then
1 1g
limnsup/deP’n < Z + z ;limnsup P,.(F;)
1 1
< -4+ P(F;) < — dP
SprRLRE< g [
Since k is arbitrary, this gives (5.2). i

Ifz, —» x, P, =9,,,and P = §,, it is easy to see IP,, converges weakly to P.
Letting A = {z} shows that one cannot, in general, have lim,, P, (F') = P(F)
for all closed sets F'.

5.3 The Prohorov theorem

It turns out there is a simple condition that ensures that a sequence of prob-
ability measures has a weakly convergent subsequence.

Definition 5.3 A sequence of probabilities P, on a metric space S is tight
if for every e there exists a compact set K (depending on e) such that
sup,, P, (K°) < e.

The important result here is Prohorov’s theorem.

Theorem 5.4 If a sequence of probability measures on a metric space S is

tight, there is a subsequence that converges weakly to a probability measure
on S.

Proof. Suppose first that the metric space S is compact. Then C(S), the
collection of continuous functions on S, is a separable metric space when
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furnished with the supremum norm. Let {f;} be a countable collection of
non-negative elements of C'(S) whose linear span is dense in C'(S). For each
1, f fi dP, is a bounded sequence, so we have a convergent subsequence. By
a diagonalization procedure, we can find a subsequence n’ such that [ f; dP,,
converges for all 7. By the term “diagonalization procedure,” we are referring
to the well known method of proof of the Ascoli-Arzela theorem; see any
book on real analysis for a detailed explanation. Call the limit Lf;. Clearly
0 < Lf; < ||fillo, L is linear, and so we can extend L to a bounded linear
functional on §. By the Riesz representation theorem, there exists a measure
P such that Lf = [ fdP. Since [ f;dP, — [ f;dP for all f;, it is not hard to
see, since each P, has total mass 1, that [ fdP, — [ fdP for all f € C(S).
Therefore P, converges weakly to P. Since Lf > 0 if f > 0, then P is a
positive measure. The function that is identically equal to 1 is bounded and
continuous, so 1 = P,(S) = [1dP, — [1dP, or P(S) = 1.

Next suppose that S is a Borel subset of a compact metric space S’.
Extend each IP,, initially defined on S, to &’ by setting P,(S"\ S§) = 0. By
the first paragraph of the proof, there is a subsequence P, that converges
weakly to a probability P on & (the definition of weak convergence here is
relative to the topology on §’). Since the P, are tight, there exist compact
subsets K, of § such that P,(K,,) > 1—1/m for all n. The K, will also be
compact relative to the topology on &', so by Theorem 5.2,

P(K,,) > limsup P,/ (K,) >1—1/m.

n

Since U, K, C S, we conclude P(S) = 1.
If G is open in S, then G = H N S for some H open in S’. Then

lim inf P, (G) = liminf P, (H) > P(H) = P(H N S) = P(G).

Thus by Theorem 5.2, P, converges weakly to P relative to the topology on
S.

Now let S be an arbitrary metric space. Since all the P,’s are supported
on U,, K,,, we can replace S by U,,K,,, or we may as well assume that S is
o-compact, and hence separable. It remains to embed the separable metric
space S into a compact metric space §’. If d is the metric on S, d A 1 will
also be an equivalent metric, that is, one that generates the same collection
of open sets, so we may assume d is bounded by 1. Now S can be embedded
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in &' = [0, 1]" as follows. We define a metric on &’ by
=Y 27 (la" = VAL, a=(d,d® .. ) b= ("1, (53)
i=1

Being the product of compact spaces, S’ is itself compact. If {2;} is a count-
able dense subset of S, let I : S — [0, 1]N be defined by

I(z) = (d(z, z1),d(x, 22), . ..).

We leave it to the reader to check that I is a one-to-one continuous open
map of S to a subset of §’. Since S is o-compact, and the continuous image
of compact sets is compact, then I(S) is a Borel set. O

5.4 Metrics for D|0,1]

We define the space D[0,1] to be the collection of real-valued functions on
[0, 1] which are right continuous with left limits. We will introduce a topology
on D = D[0,1], the Skorokhod topology, which makes D into a complete
separable metric space.

We write f(t—) for limy; ¢ f(s). We will need the following observation.
If fisin D and € > 0, let ty = 0, and for i > 0 let t;4; = inf{t > ¢; :
|f(t) — f(t;)| > €} A 1. Because f is right continuous with left limits, then
from some 7 on, t; must be equal to 1.

Our first try at a metric, p, makes D into a separable metric space, but
one that is not complete. Let’s start with p anyway, since we need it on the
way to the metric d we end up with.

Let A be the set of functions A from [0, 1] to [0, 1] that are continuous,
strictly increasing, and such that A(0) = 0, A(1) = 1. Define

p(f,g) =inf{e > 0: 3\ € A such that sup |A(t) —t| <e,

te[0,1]

sup |f(t) —g(A(t)] < e}

t€[0,1]

Since the function A(t) =t is in A, then p(f, g) is finite if f,g € D. Clearly
p(f,9) = 0. If p(f,g) = 0, then either f(t) = g(t) or else f(t) = g(t—) for
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each t; since elements of D are right continuous with left limits, it follows
that f = g. If A € A, then so is A™! and we have, setting s = A\71(¢) and
noting both s and t range over [0, 1],

sup [A7H(t) — [ = sup |s — A(s)|
t€[0,1] s€[0,1]

and

sup |f(A(t)) — g(t)] = sup |f(s) — g(A(s))].

tel0,1] s€[0,1]
and we conclude p(f,g) = p(g, f). The triangle inequality follows from

sup [A2 0 Aq(t) —¢[ < sup [Ai(t) — [+ sup |Aa(s) — s
te(0,1] te(0,1] s€[0,1]

and

sup [f(t) — h(Az 0 M(8))] < sup [f() — g(Aa(t))]

te[0,1] te[0,1]

+ sup |g(s) = h(Aa(s))].

s€[0,1]

Look at the set of f in D for which there exists an integer k£ such that f
is constant and equal to a rational on each interval [(: — 1)/k,i/k). Tt is not
hard to check that the collection of such f’s is dense in D with respect to p,
which shows (D, p) is separable.

The space D with the metric p is not, however, complete; one can show
that f, = 1p/2,1/241/m) is @ Cauchy sequence which does not converge. We
therefore introduce a slightly different metric d. Define

M= sup  |log 2 ZAE)

s#t,s,t€[0,1] t—s
and let
d(f,g) =inf{e > 0: 3\ € A such that ||[\|| < e, sup |f(t) —g(A(t))] <e.}
t€[0,1]

Note [|A7Y] = ||A]] and ||[Ag 0 Ar]| < |[A1]| + [[A2]]. The symmetry of d and the
triangle inequality follow easily from this, and we conclude d is a metric.



74 CHAPTER 5. THE SPACE D|0, 1]

Lemma 5.5 There exists g such that

p(f,9) <2d(f,qg)

Zfd(fag) < €0-

(It turns out ¢g = 1/4 will do.)
Proof. Since log(1 + 2z)/(2x) — 1 as © — 0, we have
log(1 —2¢) < —e < e < log(1 + 2¢)

if £ is small enough. Suppose d(f,g) < € and A is the element of A such that
d(f,g) < [IA|l < e and sup,co 1 [ f(t) — g(A(t))] < e. Since A(0) = 0, we have

At
log(1l —2¢) < —e < log % < e <log(l+ 2¢), (5.4)
or \
t
1—25<¥<1+25, (5.5)
which implies |A(t) — t| < 2¢, and hence p(f, g) < 2d(f,g). m

We define the analog {; of the modulus of continuity for a function in D
as follows. Define 0¢[a,b) = sup; jc(, 5 [ f() — f(s)| and

ff((S) = inf{llfggzxef[ti,l,ti) :dn > 1.0=th<t1 < ---<t, =1
such that t; — ¢;_1 > 6 for all i« < n}.

Observe that if f € D, then ¢(0) J 0 as 6 | 0.

Lemma 5.6 Suppose § < 1/4. Let f € D. If p(f,g) < 62, then d(f,g) <
4(5+€f((5).

Proof. Choose t;’s such that ¢; —t;,_1 > 0 and 0¢[t;_1,t;) < £¢(0)+ 0 for each
i. Pick u € A such that sup, |f(t) — g(u(t))| < 62 and sup, |u(t) —t| < 6%
Then sup, | f(u=1(t)) — g(t)| < 6% Set A(t;) = u(t;) and let A be linear in
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between. Since p~'(A(t;)) = ¢; for all 4, then ¢ and p~' o \(t) always lie in
the same subinterval [t;_1,t;). Consequently

[£(t) = gA@O)] < 1£(1) = f A+ 1f (e (A®)) — g(A®)]
< &(0) +0+ 0% < &(0) + 4.

We have

[A(t) = Altic1) = (8 = tica)| = [p(ts) — pltio) = (6 = tiza)]|
<207 < 20(t; — tiq).

Since A is defined by linear interpolation,

A() = A(s)) = (E—s)[ <20]t —s|, 5,2 €]0,1],
which leads to NP
‘M _ 1‘ < 20,
t—s
o A(t) — A
log(1 — 26) < log (@) < log(1 + 29).
Since 6 < 1, we have ||| < 44. O

Proposition 5.7 The metrics d and p are equivalent, i.e., they generate the
same topology.

In particular, (D, d) is separable.

Proof. Let B,(f,r) denote the ball with center f and radius r with respect
to the metric p and define By(f,r) analogously. Let € > 0 and let f € D.
If d(f,g) < €/2 and ¢ is small enough, then p(f,g) < 2d(f,g) < ¢, and so

Bd(f> 8/2> - BP(f? 5)'

To go the other direction, what we must show is that given f and e, there
exists ¢ such that B,(f,d) C Bqy(f,e). 0 may depend on f; in fact, it has
to in general, for otherwise a Cauchy sequence with respect to d would be a
Cauchy sequence with respect to p, and vice versa. Choose § small enough
that 462 4 £;(6Y/2) < e. By Lemma 5.6, if p(f,g) < §, then d(f,g) < e,
which is what we want.
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Finally, suppose G is open with respect to the topology generated by
p. For each f € G, let r; be chosen so that B,(f,7;) C G. Hence
G = UseaB,(f, 7). Let sy be chosen so that By(f,sy) C B,(f,r¢). Then
UreaBa(f,sf) C G, and in fact the sets are equal because if f € G, then
f € Ba(f,sy). Since G can be written as the union of balls which are open
with respect to d, then G is open with respect to d. The same argument with
d and p interchanged shows that a set that is open with respect to d is open
with respect to p. |

5.5 Compactness and completeness

We now show completeness for (D, d).

Theorem 5.8 The space D with the metric d is complete.

Proof. Let f, be a Cauchy sequence with respect to the metric d. If
we can find a subsequence n; such that f,. converges, say, to f, then it
is standard that the whole sequence converges to f. Choose n; such that
d(fn;s faye) < 277. For each j there exists A; such that

sup £, (1) = fun WO <27, A ] <27

Asin (5.4) and (5.5),

(1) — ¢ <277

Then

sup ’)‘nerJrl o )\ern ©0--+0 )‘n<t) - )‘ner S )‘n<t>’
t

= sup P‘n—i—m—i—l(s) - S|
s

< 9—(nt+m)

for each n. Hence for each n, the sequence A, 4, 0--- 0o\, (indexed by m) is
a Cauchy sequence of functions on [0, 1] with respect to the supremum norm
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on [0,1]. Let v, be the limit. Clearly v,(0) =0, v,(1) = 1, v, is continuous,
and nondecreasing. We also have

)\n+mo...o)\n(t) _)\n+mo...o>\n(8)
t—s
<[ Angm oo Al
< Al + -+ + I Aall
1
on—1"

log

<

If we then let m — oo, we obtain

()= vls)| . 1

1 I/?"L

which implies v, € A with ||v,|| < 2!,

We see that v, = v,.1 o \,,. Consequently
Slip ’fnj(yj_l(t)) - fnj+1(yj_+11(t))| = sup ’fn](s) - fnj+1 ()‘]<S))| < 2_j'

Therefore f,; o 1/;1 is a Cauchy sequence on [0, 1] with respect to the supre-
mum norm. Let f be the limit. Since

sup £ (1) = (0] = 0
and [|v;]| — 0 as j — oo, then d(f,,, f) — 0. O

We turn to compactness.

Theorem 5.9 A set A has compact closure in D0, 1] if

supsup |f(t)| < oo
feA t

and

(lsli%fféﬁ §r(9) =0.
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The converse of this theorem is also true, but we won’t need this.

Proof. A complete and totally bounded set in a metric space is compact,
and D[0,1] is a complete metric space. Hence it suffices to show that A is
totally bounded: for each € > 0 there exist finitely many balls of radius e
that cover A.

Let n > 0 and choose k large such that 1/k < n and &;(1/k) < n for each
f €A Let M =supyc sup, |f(t)| and let H = {-M +j/k:j <2kM}, so
that H is an n-net for [—M, M]. Let B be the set of functions f € DJ[0,1]
that are constant on each interval [(i — 1)/k,i/k) and that take values only
in the set H. In particular, f(1) € H.

We first prove that B is a 2n-net for A with respect to p. If f € A, there
exist tg,...,t, such that t, = 0, t, = 1, t; — t;_; > 1/k for each i, and
O¢[ti—1,t;) < n for each i. Note we must have n < k. For each ¢ choose
integers j; such that j;/k < t; < (j; + 1)/k. The j; are distinct since the ¢;
are at least 1/k apart. Define A so that \(j;/k) = t; and X is linear on each
interval [j;/k, jiy1/k]. Choose g € B such that |g(m/k) — f(A(m/k))| < n
for each m < k. Observe that each [m/k, (m+1)/k) lies inside some interval
of the form [j;/k,jiy1/k). Since A is increasing, [A(m/k), \((m + 1)/k)) is
contained in [A(j;/k), A(jit1/k)) = [ti,tiv1). The function f does not vary
more than 7 over each interval [t;,t;11), so f(A(t)) does not vary more than
n over each interval [m/k,(m + 1)/k). g is constant on each such interval,
and hence

supg(t) — O] < 20,

We have
INGi/k) — i/ k| = |t: — Ji/k| < 1/k <7

for each . By the piecewise linearity of A, sup, |\(t) —t| < n. Thus p(f,g) <
2n. We have proved that given f € A, there exists g € B such that p(f,g) <
2n, or B is a 2n-net for A with respect to p.

Now let ¢ > 0 and choose § > 0 small so that 40 + £¢(6) < € for each
f € A. Set n = 4%/4. Choose B as above to be a 2n-net for A with respect
to p. By Lemma 5.6, if p(f,g) < 2n < 67, then d(f,g) < 45 + £4(0) < e.
Therefore B is an e-net for A with respect to d. |

The following corollary is proved exactly similarly to the continuous case.
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Corollary 5.10 Suppose X,, are processes whose paths are right continuous
with left limits. Suppose for each € and n there exists ng, R, and ¢ such that

P(¢x, (0) > ) <n (5.6)
and
Mtil[épl] X ()] > R) <. (5.7)

Then the X,, are tight with respect to the topology of DI0,1].

Proof. Since each X; is in DJ0, 1], then for each i, P({x,(d) > €) — 0 as
0 — 0 by dominated convergence. Hence, given € and n we can, by taking ¢
smaller if necessary, assume that (5.6) holds for all n.

Choose ¢, =1, = 27™ and consider the §,, and A,, so that
sup P(¢x, (0,) > 27™) <277
and
sup P(sup | X, ()| > A,n) <27™.
n t

Let

Ko = {f € D[0,1] : £4(6,n) < 27™ for all m > my,
Sl;p!f(t)! < At

Each K,,, is a compact subset of D|0, 1]. We have

o

P(Xy ¢ Ki,) < ]P’(Slip [ Xn(8)] = Apmo) + Z P(€x.,(0m) = €m)

m=mg
<2704 Yy 2T =3.27m
m=my

This proves tightness. |

We show that if f,, — f with respect to d and f € 0, 1], the convergence
is in fact uniform.
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Proposition 5.11 Suppose f,, — f in the topology of D0, 1] with respect to
d and f € C[0,1]. Then sup;epq |fu(t) — f(2)] — 0.

Proof. Let € > 0. Since f is uniformly continuous on [0, 1], there exists o
such that |f(t) — f(s)| < ¢/2 if |t — s| < 6. For n sufficiently large there
exists A, € A such that sup, | f.(t) — f(An(t))] < &/2 and sup, |\, (t) —t] < 6.
Therefore | f(A\.(t)) — f(t)] < &/2, and so |f.(t) — f(t)] < e. m

5.6 The Aldous criterion

A very useful criterion for tightness is the following one due to Aldous.

Theorem 5.12 Let {X,,} be a sequence in D|0, 1]. Suppose

lim sup P(|X,,(t)] > R) =0 (5.8)
R—oo o

for each t € |0, 1] and that whenever T,, are stopping times for X,, and 6, — 0
are reals,

| X (o + 0n) — X (1) (5.9)

converges to 0 in probability as n — oo.

Proof. We will set X,,(t) = X,,(1) for t € [1,2] to simplify notation. The
proof of this theorem comprises four steps.

Step 1. We claim that (5.9) implies the following: given ¢ there exist ng and
0 such that
P(| X (70 +8) = Xa(T0)| 2 ) < € (5.10)

for each n > ng, s < 20, and 7, a stopping time for X,,. For if not, we choose
an increasing subsequence ny, stopping times 7,,, and s,, < 1/k for which
(5.10) does not hold. Taking d,, = s,, gives a contradiction to (5.9).

Step 2. Let € > 0, fix n > ng, and let T' < U < 1 be two stopping times for
X,. We will prove

P(U < T + 6, | Xn(U) — Xo(T)| > 2¢) < 16e. (5.11)
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To prove this, we start by letting A be Lebesgue measure. If
Ar = {(w,s) € Q@ x[0,20] : | X, (T + s) — X, (T)| > €},

then for each s < 2§ we have P(w : (w,s) € Ar) < € by (5.10) with 7,
replaced by T. Writing P x X for the product measure, we then have

P x A(Ag) < 26¢. (5.12)

Set Br(w) = {s : (w,s) € Ar} and Cr = {w : A(Br(w)) > 36}. From
(5.12) and the Fubini theorem,

[ ABre) ) < 25,
S0
P(CT> S 8e.
We similarly define By and Cy, and obtain P(Cr U Cy) < 16e.
If w ¢ CrUCyp, then A\(Br(w)) < 30 and A(By(w)) < 16. Suppose
U<T+6. Then

Mt € [T,T + 28] : |Xo(t) — Xo(T)| > ¢} < 16,

W=

and
Mt e [U U+ :|X,(t) — X, (U)] > e} < %5.

Hence there exists t € [T, T426|N[U, U+6] such that | X,,(t)—X,,(T)| < € and
| X (t) — X, (U)] < g; this implies | X,,(U) — X,,(T)| < 2¢, which proves (5.11).
Step 3. We obtain a bound on £y, . Let 7,0 = 0 and

Tnﬂ;J’,l = 1nf{t > Tnz : |Xn(t) — Xn<Tnz>’ Z 26} N 2.

Note we have | X, (Tyi+1) — Xn(Thi)| > 2¢ if T,,; < 2. We choose ng, d as in
Step 1. By Step 2 with T'=T,,; and U =T}, ;41,

]P)(Tn,i—l-l T < 5, T < 2) < 16e. (513)

Let K =[2/6]+ 1 and apply (5.10) with ¢ replaced by ¢/K to see that there
exist n; > ng and ¢ < d A e such that if n > ny, s < 2(, and 7, is a stopping
time, then

P(| X, (7 + 8) — Xo(1)|] > ¢/K) < ¢/K. (5.14)
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By (5.11) with T'=T,,; and U = T,, ;41 and 0 replaced by ¢,
P(T i1 <Tni + () < 16e/K (5.15)
for each 7 and hence

We have

E [Tnz - Tn,ifl; TnK < 1] ]P)(Tm - Tn,ifl Z 57 TnK < 1)

[]P) TnK < 1) — ]P(Tm, — Tn,i—l < 5, TnK < 1)]
[

)
> O[IP(
> 0[P(T,x < 1) — 16¢],

where we used (5.13) in the last step. Summing over ¢ from 1 to K,

K
P(Tox < 1) > B [Tog; Tox < 1] =Y E [Ty — Tpim1; Tok < 1]
=1

> KS[P(T,x < 1) — 16¢] > 2[P(Tpx < 1) — 16¢],

or P(T,x < 1) < 32¢. Hence except for an event of probability at most 32¢,
we have &x, (() < 4e.

Step 4. The last step is to obtain a bound on sup, | X, (t)|. Let ¢ > 0 and
choose § and ng as in Step 1. Define

Dpr, ={(w,s) € 2 x[0,1] : | X,(s)(w)| > R}

for R > 0. The measurability of Dg, with respect to the product o-field
F x B[0,1] where BJ0, 1] is the Borel o-field on [0, 1] follows by the fact that
X, is right continuous with left limits. Let

G(R,s) = sgpP(\Xn(sﬂ > R).

By (5.8), G(R,s) — 0 as R — oo for each s. Pick R large so that
A{s: G(R,s) > ed}) < eo.

Then

1, G(r,s) > o,

g6, otherwise.

/IDRn(w,s)P(dw) =P(|X,.(s)| > R) < {
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Integrating over s € [0, 1],
P x )\(DRn) < 2¢6.

If Erp(w) ={s: (w,s) € Dr,} and Fg, = {w : A\(ERr,) > §/4}, we have

L5B(Fpn) = / L P(dw) < / /0 Lps (w.5) Mds) P(dw) < 266,

Frn

so P(Fg,) < 8e.

Define T' = inf{t¢ : | X,,(t)] > R+ 2¢} A2 and define Ay, By, and Cr as in
Step 2. We have
P(Cr U Fry,) < 16¢.

Ifwé¢ CrUFg, and T < 2, then A\(Eg,(w)) < §/4. Hence there exists
t € [T,T + 260] such that |X,(¢)] < R and | X, (t) — X,,(T)| < e. Therefore
| X,.(T)| < R+ e, which contradicts the definition of 7. We conclude that T
must equal 2 on the complement of C'r U Fg,, or in other words, except for
an event of probability at most 16e, we have sup, | X,,(t)| < R+ 2¢, provided,
of course, that n > ny.

An application of Corollary 5.10 completes the proof. O
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Chapter 6

Markov processes

6.1 Introduction

It is not uncommon for a Markov process to be defined as a sextuple (2, F,
Fiy Xi, 0, P7), and for additional notation (e.g., (,A,S, P, Ry, etc.) to be
introduced rather rapidly. This can be intimidating for the beginner. We
will explain this notation in as gentle a manner as possible. We will consider
a Markov process to be a pair (X;,P*) (rather than a sextuple), where X, is
a single stochastic process and {P*} is a family of probability measures, one
probability measure P* corresponding to each element x of the state space.

The idea that a Markov process consists of one process and many prob-
abilities is one that takes some getting used to. To explain this, let us first
look at an example. Suppose Xi, Xo,... is a Markov chain with station-
ary transition probabilities with 5 states: 1,2,...,5. Everything we want to
know about X can be determined if we know p(i,7) = P(X; = j | Xo = 1)
for each ¢ and j and pu(i) = P(X, = i) for each . We sometimes think
of having a different Markov chain for every choice of starting distribution
= (u(1),...,u(5)). But instead let us define a new probability space by
taking €’ to be the collection of all sequences w = (wy, ws, - ..) such that each
wy, takes one of the values 1,...,5. Define X, (w) = w,. Define F, to be the
o-field generated by Xo, ..., X,; this is the same as the o-field generated by
sets of the form {w : wy = ao, ...,w, = a,}, where ag,...,a, € {1,2,...,5}.
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For each x = 1,2,...,5, define a probability measure P* on ' by

]P)x<X0 :l’O,Xl :'rla-'-Xn :xn) (61)
= Loy (wo)p(wo, 21) - -+ P(Tn—1, ).

We have 5 different probability measures, one for each of z = 1,2,...,5,
and we can start with an arbitrary probability distribution p if we define
PH(A) = 327 Pi(A)u(i). We have lost no information by this redefinition,
and it turns out this works much better when doing technical details.

The value of Xy(w) = wy can be any of 1,2, ..., 5; the notion of starting at
x is captured by P*, not by X,. The probability measure P* is concentrated
on those w’s for which wy = = and P* gives no mass to any other w.

Let us now look at a Lévy process, and see how this framework plays out
there. Let P be a probability measure and let Z; be a Lévy process with
respect to P started at 0. Then Z7 = x + Z, is a Lévy process started at x.
Let €' be the set of right continuous left limit functions from [0, 00) to R,
so that each element w in ' is a right continuous left limit function. (We
do not require that w(0) = 0 or that w(0) take any particular value of z.)
Define

Xi(w) = w(t). (6.2)

This will be our process. Let F be the o-field on €, the right continuous
left limit functions, generated by the cylindrical subsets. Now define P* to
be the law of Z*. This means that P* is the probability measure on (€', F)
defined by

PH(X e A)=P(Z" € A), reRAeF. (6.3)

The probability measure P* is determined by the fact that if n > 1, t; <
-+« <t,,and By,..., B, are Borel subsets of R, then

P(Xy, € By,.... Xy, €B,) =P(Z € By,..., Z €B,).

6.2 Definition of a Markov process

We want to allow our Markov processes to take values in spaces other than
the Euclidean ones. For now, we take our state space & to be a separable
metric space, furnished with the Borel o-field. For the first time around, just
think of R in place of S.
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To define a Markov process, we start with a measurable space (2, F) and
we suppose we have a filtration {F;} (not necessarily satisfying the usual
conditions).

Definition 6.1 A Markov process (X;, P*) is a stochastic process
X :[0,00) x Q=S8

and a family of probability measures {P* : x € S} on (Q, F) satisfying the
following.

(1) For each t, X; is F; measurable.
(2) For each t and each Borel subset A of S, the map v — P*(X; € A) is

Borel measurable.

(8) For each s,t > 0, each Borel subset A of S, and each x € S, we have

P (X, € A| F) = P5 (X, € A), P’ — a.s. (6.4)

Some explanation is definitely in order. Let
o(x) =P*(X; € A), (6.5)

so that ¢ is a function mapping S to R. Part of the definition of filtration
is that each F;, C F. Since we are requiring X; to be F; measurable, that
means that (X; € A) is in F and it makes sense to talk about P*(X; € A).
Definition 6.1(2) says that the function ¢ is Borel measurable. This is a very
mild assumption, and will be satisfied in the examples we look at.

The expression P*<(X; € A) on the right hand side of (6.4) is a random
variable and its value at w € € is defined to be ¢(X;(w)), with ¢ given
by (6.5). Note that the randomness in P*:(X, € A) is thus all due to the
X, term and not the X; term. Definition 6.1(3) can be rephrased as saying
that for each s,t, each A, and each x, there is a set N,;, 4 C ) that is a
null set with respect to P* and for w ¢ Ny, . 4, the conditional expectation
P*( X4t € A | Fs) is equal to ¢(X).

We have now explained all the terms in the sextuple (Q, F, F;, Xy, 0;, P*)
except for #;. These are called shift operators and are maps from 2 —
such that X 06; = X,.;. We defer the precise meaning of the 6; and the
rationale for them until Section 6.4, where they will appear in a natural way.
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In the remainder of the section and in Section 6.3 we define some of the
additional notation commonly used for Markov processes. The first one is
almost self-explanatory. We use E” for expectation with respect to P*. As
with PXs(X, € A), the notation E**f(X,), where f is bounded and Borel
measurable, is to be taken to mean ¥ (X;) with ¢(y) = EYf(X,).

If we want to talk about our Markov process started with distribution pu,
we define

P(B) = [ B*(B) ulde),

and similarly for E#; here p is a probability on S.

6.3 Transition probabilities

If B is the Borel o-field on a metric space S, a kernel Q(z, A) on S is a map
from § x B — R satisfying the following.

(1) For each z € S, Q(x,-) is a measure on (S, B).

(2) For each A € B, the function x — Q(x, A) is Borel measurable.

The definition of Markov transition probabilities or simply transition prob-
abilities is the following.
Definition 6.2 A collection of kernels {P,(x, A);t > 0} are Markov transi-
tion probabilities for a Markov process (X, P*) if

(1) Pi(z,S) =1 for eacht > 0 and each x € S.

(2) For each x € S, each Borel subset A of S, and each s,t > 0,

Proaa, A) = / Py, A)Py(x, dy). (6.6)

(3) For each x € S, each Borel subset A of S, and each t > 0,

Definition 6.2(3) can be rephrased as saying that for each z, the measures
P,(z,dy) and P*(X; € dy) are the same. We define

Pof(x) = / £(4) Pi(, dy) (6.8)
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when f : S — R is Borel measurable and either bounded or non-negative.

The equations (6.6) are known as the Chapman-Kolmogorov equations.
They can be rephrased in terms of equality of measures: for each x

Ps+t(9c,dz):/ P(y,dz)Ps(z, dy). (6.9)

yeS

Multiplying (6.9) by a bounded Borel measurable function f(z) and integrat-
ing gives

Pof(a) = / Pof(y) P, dy). (6.10)

The right hand side is the same as P;(P.f)(z), so we have

Pertf(:C) = PsPtf(x)v (611)

i.e., the functions Py, f and P;P,f are the same. The equation (6.11) is
known as the semigroup property.

P, is a linear operator on the space of bounded Borel measurable functions
on §. We can then rephrase (6.11) simply as

P, = P,P, (6.12)

Operators satisfying (6.12) are called a semigroup, and are much studied in
functional analysis.

One more observation about semigroups: if we take expectations in (6.4),
we obtain

P*(X,. € A) =E° []P’Xs (X, € A)].
The left hand side is Psy;14(2) and the right hand side is
Em[PtlA(Xsﬂ = psPtlA(x)a

and so (6.4) encodes the semigroup property.

The resolvent or A-potential of a semigroup P; is defined by

R,\f(x):/ e MP,f(z)dt, A>0, z€S8.
0
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This can be recognized as the Laplace transform of P,. By the Fubini theo-
rem, we see that
Ryf(x) = EI/ e M F(Xy) dt.
0
Resolvents are useful because they are typically easier to work with than
semigroups.

When practitioners of stochastic calculus tire of a martingale, they ‘stop’
it. Markov process theorists are a harsher lot and they ‘kill” their processes.
To be precise, attach an isolated point A to S. Thus one looks at § = SUA,
and the topology on S is the one generated by the open sets of S and {A}. A
is called the cemetery point. All functions on S are extended to S by defining
them to be 0 at A. At some random time ( the Markov process is killed,
which means that X; = A for all £ > (. The time ( is called the lifetime of
the Markov process.

6.4 The canonical process and shift operators

Suppose we have a Markov process (X;, P*) where F; = o(Xy; s < t). Sup-
pose that X; has right continuous left limit paths. For this to even make
sense, we need the set {t — X} is not right continuous left limit} to be in F,
and then we require this event to be P*-null for each x. Define Q to be the
set of right continuous left limit functions on [0, 00). If & € Q, set X, = &(t).
Define F; = O(JN(S; s <t)and Foo = \/tzoft- Finally define P* on (SNZ, JEOO) by
P*(X € -) = P*(X €-). Thus P* is specified uniquely by

I’ﬁ)x(‘%tl € A17"'7‘S\(:tn € An) :PI(th S A17'~-7th S An)

for n > 1, Ay, ..., A, Borel subsets of S, and t; < --- <t,. Clearly there is
so far no loss (nor gain) by looking at the Markov process (X, P*), which is
called the canonical process.

Let us now suppose we are working with the canonical process, and we
drop the tildes everywhere. We define the shift operators 6; : 2 — € as
follows. 6;(w) will be an element of €2 and therefore is a continuous function
from [0,00) to S. Define

O (w)(s) = w(t + s).
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Then
X500 (w) = Xs(0(w)) = 0(w)(s) =w(t+ s) = Xyps(w).

The shift operator 6; takes the path of X and chops off and discards the part
of the path before time ¢.

We will use expressions like f(X;) o 6. If we apply this to w € €2, then

(f(Xs) 0 0)(w) = f(Xs(6:(w))) = [(Xspe(w)),
or f(Xs) o0 = f(Xepe)-

Even if we are not in this canonical setup, from now on we will suppose
there exist shift operators mapping €2 into itself so that

XS 9] 91& = Xs—‘,—t-

6.5 Enlarging the filtration

Throughout the remainder of this chapter we assume that X has paths that
are right continuous with left limits. To be more precise, if

N ={w: the function ¢ — X;(w) is not right continuous with left limits},

then we assume N € F and N is P*-null for every z € S.

Let us first introduce some notation. Define
FP=0(X;s<t), t>0. (6.13)

This is the smallest o-field with respect to which each X, is measurable for
s <t. We let F? be the completion of F°, but we need to be careful what
we mean by completion here, because we have more than one probability
measure present. Let N be the collection of sets that are P*-null for every
z €S. Thus N € N if (P*)*(N) = 0 for each = € S, where (P*)* is the outer
probability corresponding to P*. The outer probability (P*)* is defined by

(P*)*(S) = inf{P*(B) : AC B, B € F).

Let
F =o(FPUN). (6.14)
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Finally, let
Fo=Fp = NesoFphe (6.15)

We call {F;} the minimal augmented filtration generated by X. The rea-
son for worrying about which filtrations to use is that {F °} is too small to
include many interesting sets (such as those arising in the law of the iter-
ated logarithm, for example), while if the filtration is too large, the Markov
property will not hold for that filtration.

The filtration matters when defining a Markov process; see Definition
6.1(3).

We will make the following assumption.

Assumption 6.3 Suppose P, f is continuous on S whenever f is bounded
and continuous on S.

Markov processes satisfying Assumption 6.3 are called Feller processes or
weak Feller processes. If P, f is continuous whenever f is bounded and Borel
measurable, then the Markov process is said to be a strong Feller process.

One can show that under Assumption 6.3 we have

P* (X € A| F) =P%(X, € A), P°—as.

6.6 The Markov property

We start with the Markov property:
E*[f(Xon) | ] =EX[f(X)], P —as. (6.16)

Since f(Xsy¢) = f(Xy) 0 by, if we write Y for the random variable f(X}), we
have

E*Y o, | F] =E*Y,  P*—as. (6.17)
We wish to generalize this to other random variables Y.
Proposition 6.4 Let (X;,P*) be a Markov process and suppose (6.16) holds.

Suppose Y =[]\, fi(Xt,—s), where the f; are bounded, Borel measurable, and
s<t; <...<t,. Then (6.17) holds.
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Proof. We will prove this by induction on n. The case n = 1 is (6.16), so
we suppose the equality holds for n and prove it for n + 1.
Let V = H;L;l 5(X¢,—1,) and h(y) = EYV. By the induction hypothesis,
n+1
B[ T £5(X0)IF| = E[E7V 0 0| Fu) (X)) 17

j=1
—E*|(EXV) £1(X,,)|F]
= E*[(hf2)(Xe, )| F4].
By (6.16) this is EX*[(hf1)(X;,_,)]. For any v,
EY[(hfi)(Xe-s)] = EY[(E* V) fi( X))
=BV [BY[V 0 0y, | F (X0 )]
=EY[(V 00, —s) f1(Xe,—5)].
If we replace V' by its definition, replace y by X, and use the definition of

0, —s, we get the desired equality for n 4+ 1 and hence the induction step. O

We now come to the general version of the Markov property. As usual,
Fe = VizoF:. The expression Y o 6, for general ¥ may seem puzzling at
first.

Theorem 6.5 Let (X, P*) be a Markov process and suppose (6.16) holds.
Suppose Y s bounded and measurable with respect to Foo. Then

E* Y of, | F]=E*Y, P"—as. (6.18)
The proof follows from the previous proposition by a monotone class ar-

gument.

6.7 Strong Markov property

Given a stopping time 7', recall that the o-field of events known up to time
T is defined to be

Fr={AeFu:AN(T' <t)e F forallt >0}
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We define 01 by 07(w)(t) = w(T(w) + t). Thus, for example, X; o Or(w) =
Xr(yrt(w) and Xr(w) = Xpw)(w).

Now we can state the strong Markov property.

Suppose (X, P*) is a Markov process with respect to {F;}. The strong
Markov property is said to hold if whenever T is a finite stopping time and
Y is bounded and measurable with respect to F.,, then

EY o 0p|Fr] = EXTY,  P* —as.

Recall that we are restricting our attention to Markov processes whose
paths are right continuous with left limits. If we have a Markov process
(X, P") whose paths are right continuous with left limits, which has shift
operators {6,}, and which satisfies the strong Markov property, whether or
not Assumption 6.3 holds, then we say that (X;,P?*) is a strong Markov
process. A strong Markov process is said to be quasi-left continuous if X7, —
Xr, a.s., on {T" < oo} whenever T,, are stopping times increasing up to 7.
Unlike in the definition of predictable stopping times, we are not requiring the
T,, to be strictly less than T'. A Hunt process is a strong Markov process that
is quasi-left continuous. Quasi-left continuity does not imply left continuity;
consider the Poisson process.



Chapter 7

Stable-like processes

7.1 Martingale problems

We saw in the chapter on SDEs that if X, is a Lévy process, then
t
700 = £06) = [ £7(X)ds
0

is a martingale, where f € C? the C? functions such that f, f’, f" are
bounded, and

Cf(x) = / @+ ) — f(z) — (@) Rl gajny] m(dh).

There is something analogous for all Markov processes. Given a Markov
process (X¢, P*), we say L is the weak infinitesimal generator if

Bif(x) — f(x)

; — Lf(x)

boundedly and pointwise as ¢ — 0 for all f in some domain. This is different

from the usual definition of infinitesimal generator in functional analysis, as
there the convergence has to be in norm.

Proposition 7.1 If f is in the domain of the weak infinitesimal generator,
then My = f(X;) — f(Xo) — f(f Lf(X,)ds is a martingale.

95
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Proof. Note

Pon f(:z:)h— Pf@) _p (W) (2).

By dominated convergence, the right hand side converges to P,Lf(x) as
h — 0. Therefore the derivative of P;f(x) is P,Lf(z).

Since P, Lf is bounded,

P - )= | L) ds,

or

B7FX) ~ B (X0) =7 [ £7(x)ds

By the Markov property,

Ex[Mt - Ms | fs] = EXSf(Xt—S) - f(Xs) - EXS /Ot_s ‘Cf(XT) dr = 0.

This is what we want. |

Here is some terminology. Let £ be an operator, xy a point in the state
space. We say a probability measure PP is a solution to the martingale problem
for £ started at xq if
(].) ]P)(XO = CL’()) =1 a.s.

(2) for all f in the domain of £, f(X;)— f(Xo) —f(f Lf(Xs)ds is a martingale.

The martingale problem is well posed if there is a solution to the martin-

gale problem started at x( for each z( in the state space and the solution is
unique.

Here is a fact that we will not prove.

Theorem 7.2 Suppose the martingale problem is well posed. If P* is the
solution to the martingale problem started at xo, then (X;,P*) is a strong
Markov process.
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7.2 Stable-like processes

The term stable-like process refers to several types of processes. Here is one
of them. We have seen that if we let L£f be defined by

Cf(z) = / &+ ) — f(z) — ()Wl gajeny] m(dh)

for f € C?, then P is a solution to the martingale problem for the Lévy
process started at 0. In particular, if we have a symmetric stable process of
index a, then m(dh) gets replaced by c/|h|*** dh.

Let us suppose we have a strong Markov process such that for every x, P*
is the unique solution to the martingale problem for L started at x, where
we define

Lf(x) = /[f(:c +h) = f(@) = [(@)hln<) % dh,

for f € C¢. The way to think about this is that it is a lot like a stable
process, but its intensity varies from point to point, and the intensity also
varies with the size of the jump. We suppose there exist constants ¢y, co such
that

0<c <A(xz,h) <cp < o0

for all z and h.

We also want to go to higher dimensions, so we replace |h|'T® by |h|d+e
and f'(z)h by Vf(z)-h. Now C} refers to C? functions f such that f and
all its first and second partial derivatives are bounded.

7.3 Some properties

Let us begin by describing more carefully the processes we wish to consider.
A probability measure P on the space D[0, 00) is a solution to the martingale
problem for £ started at x if X;(w) = w(t) are the coordinate maps, F; is
the o-field generated by the cylindrical sets, and

(1) we have P(Xy = x) = 1, and

(2) for each f € C? we have that

%) - %) - | LF(X)ds (.1)
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is a P-martingale, where
£ia) = [ () = fla) = V@) hlgelnte bdh
Ri—{0}

The symmetry assumption we will impose on n will make the presence of
the Vf term have no effect; moreover we could replace the 1(<1) term by
L(jnj<nry With any M > 0 whatsoever.

We assume that (P*, X;) is a strong Markov process with state space R?
such that for each x the probability measure P* is a solution to the martingale
problem for L started at x.

Throughout this chapter we make the following assumption.

Assumption 7.3 (a) For all z and h we have n(x, —h) = n(z, h).
(b) There exist constants x € (0,1) and « € (0,2) such that for all x and h

we have .
o
[7o[d+o < n(z,h) < |h[d+a

(7.2)

The proof of the following scaling property is an easy change of variables
argument.

Proposition 7.4 Suppose (P*, X;) is as above, a > 0, and Y; = aX,-a;.
Define Q* = P*%. Then (Q",Y};) is a strong Markov process. We have
Q*(Yp = x) = 1 and if f € C?, then f(Y;) — f(Yo) — [y Lf(Y:)ds is a Q*-
martingale, where Lf(x) = [1f(x+ k) = f(z) = Vf(x) - hln<nln(z, h)dh

and n satisfies (7.2) with the same values of k and «.

Proof. Because (P*, X;) is strong Markov and Y; is a constant multiple of a
time change of X, then (Q7,Y;) is strong Markov. That Q*(Yp =1) =1 is
clear. Let

n(y, k) = a” T n(ay, a k)

and

Ef) = [ 1)~ £0) = ) B il Bk
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Clearly 7 satisfies (2.3) with the same values of x and «. Let f € C? and set
g(x) = f(ax). Then

—ay

9(X o) — g(X0) — / U Lg(x)ds

is a martingale, hence so is

t
9(Xamer) — g(Xo) — / 4= Lg(X, ns)ds.
0
Consequently
t
FO00) = 1(%) = [0 Lol ods
0

is also a martingale.

It remains to check that a=*Lg(a~'y) = Lf(y). This follows because,
omitting the gradient term for simplicity,

o Lyla™'y) = [lafa™ly + 1) = ola plnta 'y, bk
= [1fy+ ak) = Sw)nlap. K
=t [1fy+ab) ~ F(y)ly. ak)ak
— [+ 1) - )il bn

= Lf(y).

We will also need the following fact, known as the Lévy system formula.

Proposition 7.5 Suppose A and B are Borel sets that are a positive distance
from each other. Then

t
Zl(XS_GA,XSEB)_/ 1A(Xs)/n(Xs,u—X8)duds
0 B

s<t

is a P*-martingale for each x.
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Proof. Let f € C? with f = 0on A and f = 1 on B. Let M{ denote
the martingale in (7.1). Then fg 14(X,_)dM] is also a martingale under P7,
since the stochastic integral with respect to a martingale is a martingale.

Since f(X:) — f(Xo) = >, [f(Xs) — f(Xs-)], this says that
S0 ) = 1%, )] - [ e

is a martingale. Since X,_ # X, for only countably many values of s, then
S A )~ 10~ LI (73)

is also a martingale. Now if x € A, then f(x) and V f(z) are both equal to
0, and so

Lf(z) = /Rd_{o} fz+ h)n(z, h)dh = / fw)n(z,u—x)du.

Ré—{0}

Note n(x,h) is integrable over A in the complement of any neighborhood of
the origin. Because A and B are a positive distance from each other, the
sum on the left of (7.3) is actually a finite sum. With these facts we can pass
to a limit to see that

Z[lA(XS_)(lB(XS)—1B(Xs_)]—/0 lA(XS)/Bn(Xs,u—XS)duds

s<t

is a martingale, which is equivalent to what we wanted to prove. |

By taking limits, it is not necessary to assume that A and B are a positive
distance apart, but only that they are disjoint.

We let B(z,r) denote the ball of radius r centered at . We use |4| to
denote the Lebesgue measure of A. Set

Ta=1inf{t >0: X; ¢ A}, Ty=inf{t >0: X; € A}.
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7.4 Harnack inequality
We begin this section by proving a tightness result.

Proposition 7.6 There exists ¢; depending only on k and not x such that

P?(sup | Xs — Xo| > 1) < ¢4t

s<t

Proof. Let f be a C? function taking values in [0, 1] such that f(0) = 0 and
fly)=1if ly| > 1. Let f.(y) = f(y — z). By the Taylor expansion of f,,

|(falz +h) = fa(2)) + (folz = h) = fu(2))] < cal BI*. (7.4)

Since n is symmetric, this and and our assumptions imply

LEEN[[ 1t = Loz

+

/ [fo(z + h) = fu(2)]n(z, h)dh’
|h|>1

< 03/ |h|*n(z, h)dh + c4 n(z, h)dh
[hl<1

|h|>1
< Cs.

We now use (7.1) to write

TB(I,l)/\t
B Fo(Xog ) — o) =B [ LA s < et
0

If X; exits B(x,1) before time ¢ then f.(X.,, a) =1, and so the left hand
side is greater than P*(7g(;1) < t). m

Lemma 7.7 Let ¢ > 0. There exists c; depending only on € such that if
r €R? and r > 0, then

inf E*1g(zm > 7.
z€B(z,(1—¢€)r) Bler) =™
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Proof. By scaling we may assume r = 1. By the previous proposition and
scaling, if z € B(z,1 —¢)

P*(Tpe1) < %t) < P?*(sup | X — Xo| > ¢) < ot

s<e“t
Thus
E*Tp@,1) > e*tP*(TB(z1) = €7t) > e™t(1 — cat) .
Taking t = 1/(2¢3) yields a uniform lower bound. O

Lemma 7.8 There exists ¢, such that sup, E*71p ) < cir®.

Proof. By scaling, we may suppose r = 1. Let S be the time of the first
jump larger than 2. We want to show there exists c2 € (0, 2) such that
P*(S < 1) > ¢, for all z. For z such that P*(S < 1) > 1, there is nothing to
show. So suppose z is such that P#(S < 1) < 1. By an argument similar to
that in Proposition 7.5,

t
Zl<xs—xs|>2>—// n(Xs, h)dh
0 J(|h|>2)

s<t

is a martingale. Then by optional stopping and by the lower bounds on n

PA(S<1)=E* ) Iix.—x. 2

s<SAL

SA1
/ / n(X,, h)dhds
(|h]>2)

>63E S/\l >03]PJZ(S>1>>C3/2

Letting co = (1 A c3)/2, we have P*(S < 1) > c,.
If there is a jump larger than 2 before time 1, then 7p(,1) < 1. So

supP* (11 > 1) < 1 —ca.
4
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Let 6; be the usual shift operator for Markov processes. By the Markov
property,

PZ(TB(IJ) >m + 1) < PZ(TB(x,l) > M, TB(z,1) © 0,, > 1)
= FE* []P)Xm (TB(x,l) > 1), TB(x,1) >m
< (1= )P (TB(z,1) > m).

By induction, P*(7p1) > m) < (1 — ¢p)™, which implies that 7p5(,1) has
moments of all orders. |

Next we show X; will hit sets of positive Lebesgue measure with positive
probability.

Proposition 7.9 Suppose A C B(x,1). There exists ¢; not depending on x
or A such that

]P’y(TA < TB(x’g)) > Cl|A‘, Yy < B(QT, 2)

Proof. Fix y € B(x,2). Write 7 for 7p(3. If X; is in A for some ¢
less than time 7 with probability larger than 1/4, we are done, so assume
P¥(Ty < 1) < 1/4. Using a previous proposition and scaling, choose t
small enough so that the probability that 7 occurs before time ¢ is also less
than 1/4. Note that T4 cannot equal 7 because A C B(xz,1). For |h| < 4,
n(Xs, h) is bounded below by our assumptions. Hence for X € B(x,3) and
u € A C B(z,1), we have | X — u| < 4, and consequently n(X;, u — X) is
bounded below. So

PY(Ty <7)>E"Y Z L(x,_#£X,,Xs€4)

s<TANTNtg

TANTAtg
:Ey/ /n(XS,u—XS)duds
0 A

Z CQ|A|]Ey(TA ANTN to)
Now

Ey(TA NT /\to) Z Ey(tO;TA Z T Z to)
= t(]]P)y(TA Z T Z to)
> to[l — ]P)y(TA < T) — ]P)y(T < to)] > t0/2
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Combining this with the above,

Py<TA < T) > 02’A|t0/2

Proposition 7.10 There exist ¢; and co such that if v € RYr > 0,z €
B(x,r), and H is a bounded nonnegative function supported in B(x,2r)¢,
then

. . H(y)
E H(Xop, ) < a (E TB(I’”) / |y—$|d+ady

and H(y)
z z —y
E*H(Xqs,.,) 2 C2 (E TB(I’”) / ly — m|d+°‘dy

Proof. Note H(w) =0 if w € B(x,r) and H(X,,, ) > 0 only if there is a

jump from B(z,r) to B(z,2r). By optional stopping, if B C B(zx,2r)°

tAT(B(z,r))
E Zl(Xt/\T(B(:z;,r))eB) =E* / / n(XS7 u— Xs)du ds
0 B

tAT(B(z,r)) 3
SEZ/ /—duds
0 B lu— X [dte
dy
§C4Ezt/\TB$’T /—
( ( )) B |y — x|t

Letting ¢ — oo, using monotone convergence on the right and dominated
convergence on the left, we have

: . Iy

Using linearity we have the above when 15 is replaced by a simple function;
approximating H by simple functions and taking limits, we have the first
inequality in the statement of the proposition.

The proof of the second inequality is exactly similar, using the lower bound
for n instead of the upper bound. |
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We say a bounded function » : R — R is £-harmonic in a domain D if
h(Xins,,) is a P*-martingale for all z. It is easy to see that if h is C? in D,
and Lh(z) =0 for x € D, then h will be £-harmonic.

Theorem 7.11 There exists ¢y such that if h is nonnegative and bounded
on R? and L-harmonic in B(xg,16), then

h(z) < ci1h(y), x,y € B(xg, 1).

Proof. By looking at a constant multiple of A, we may assume infp(,, 1) h =
5. Choose zy € B(zo,1) such that h(z) < 1. We want to show that h
is bounded above in B(zg,1) by a constant not depending on h. We will
establish this by contradiction: if there exists a point x € B(xg,1) with
h(z) = K where K is too large, we can obtain a sequence of points in
B(x,2) on which A is unbounded.

Let e < 3 be chosen so that |[B(0,1—¢)|/|B(0,1)] > 3. Using our lemmas
and propositions, there exists ¢y such that if z € R%r > 0, and H is a
nonnegative function supported on B(x,2r)¢, then for y, z € B(z, (1 —¢)r),

E*H(X-(B@r) < QB H(Xo(Bm))- (7.5)
By a proposition there exists c¢3 such that if A C B(x,4),
PY(Ta < TB(z0,16)) = c3]Al, y € B(xg,8). (7.6)

Also there exists ¢, < 1 such that if x € RY r > 0, and C' C B(x,r/3) with
(CI/|Bla.7/3)| = 1. then

Px(TC < TB(az,r)) > cy. (77)

Let .
1= (= Al (78)

Now suppose there exists © € B(xo,2) with h(z) = K for some K > 2.
Let r be chosen so that

|B(,7/3)| = 2/(csCK). (7.9)
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Note this implies
r=cs K4, (7.10)

Let us write B, for B(x,r), 7, for TB(z,) and similarly By, and 75,.. Let A be
a compact set contained in
A'=A{w e B(z,r/3) : h(w) > CK}.

By (7.6) and optional stopping,

1 Z h(Z()) Z EZO [h(XTA/\TB(zOJG)); TA < TB(xo,lﬁ)]
> (KP* (T4 < TB(0,16))
> CBCK|A’7

hence
AL . L

|B(x,7/3)] — es(K|B(x,7/3)]

This implies |A’|/|B(z,r/3)] < 3. Let C be a compact set contained in
B(z,r/3) — A’ such that

1
< -.
-2

Cl

1
Bl /9] 2 3 1y

Let H = hl Bg - We claim
E*“[h(X5,); X7, & By] <nK

If not
E*H(X,) > nk,

T

and by (7.5), for all y € B(z,r/3),

h(y) = EYh(X7,) = EY[W(X5,); Xr, ¢ Ba]
>y "B H(X,,) > c;'nK
> (K,

contradicting (7.11) and the definition of A’, noting that |C|/|B(z,r/3)| > 3
and so A’ is a proper subset of B(z,r/3).
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Let M = supp, h(z). We then have

K =nh(z) =E*[WMX7.); Tc < 7] + E*[M(X,.); 7 < Te, X, € Ba,)
+E*h(X,,); 7 < Te, X, ¢ Bay
< CKPY(Te < 7,) + MP* (7. < To) + nK
=(KP'(Te < 1) + M(1 —P* (T < 7)) + 1K,

or
M - 1—n—CP(Te < 7)

K= 1-P(Tc<m)
Since ¢ < 3, then ¢4(1 — ¢) > ¢4/3 =7, and then

P*(Te <7)(1 = ¢) = cs(1 = ¢) >,

hence
PY(Te < 1) > n+ (P (Te < 7).

This implies
1— ]P)I(TC < Tr) <1l—n-— CPI(TC < Tr),

and therefore M /K > 1.

Using (7.7) and (7.8) there exists f > 0 such that M > K(1 + 20).
Therefore there exists 2’ € B(x,2r) with h(z") > K(1 + f).

Now suppose there exists 1 € B(xzg,1) with h(z;) = K;. Define
in terms of K; analogously to (7.9). Using the above argument (with z;
replacing = and z, replacing z'), there exists xo € B(z1,2r) with h(zy) =
Ky > (1 + B)K;. We continue and obtain ro and then x3, K3, 73, etc. Note
Tiv1 € B(z,2r;) and K; > (1 + 8)7'K;. In view of (7.10),

c

i1 — @] < 2r < /K < —,
Ky (14 )

which is summable, hence

Z |z — 2] < CGKfl/d-
;

So if K; > ¢, then we have a sequence xy, Ty, ... contained in B(zg,2) with
h(z;) > (1 + B)71K; — oo, a contradiction to h being bounded on R¢.
Therefore we cannot take K larger than ¢; = ¢, and thus sup Blaon) P(y) <
c1, which is what we wanted to prove. O



108 CHAPTER 7. STABLE-LIKE PROCESSES

Corollary 7.12 Suppose D is a bounded connected domain and r > 0.
There exists ¢y depending only on D and r such that if h is nonnegative
and bounded in RY and L-harmonic in D, then h(x) < cih(y) if v,y € D
and dist (z,0D) and dist (y,0D) are both greater than .

Proof. We form a sequence © = 4o, y1, 92, - - -, Ym = y such that |y, 1 —y;| <
(@it1 A a;)/32, where a; = dist (y;, 0D) and each a; < r. By compactness we
can choose M depending only on r so that no more than M points y; are
needed. By scaling and and the previous theorem, h(y;) < cah(yi1) with
ca > 1. So

h(z) = h(yo) < cah(yr) < -+ < 'h(ym) = c5'h(y) < e h(y).

7.5 Regularity
In this section we obtain some estimates on equicontinuity of resolvents.

Theorem 7.13 If h is bounded on R? and L-harmonic in a ball B(zg,?2),
then h is Holder continuous in B(xo, 1): there exist ¢; and > 0 such that

h(z) = h(y)| < eillblloclz —yl°, @,y € B(xo,1).
Proof. By a proposition there exists ¢, such that if z € R% r > 0, and
A C B(z,r/3) with |A|/|B(z,r/3)| > 1, then
Px(TA < TB(x,r)) > Co. (712)
By our propositions and lemmas with H = 1p(, ), there exists c3 such that
if s > 2r, then
P (Xoy,., & B(w,s)) < car®/s”. (7.13)

Let ” ) y Ny
C2 AN Co7y «
7 ( 4 P 3 2 A 8cs
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By linearity and scaling it suffices to suppose 0 < h < M on R? and h is
L-harmonic on B(z,1). We will show

sup h— inf h < Mok (7.14)
B(z,p%) B(z,p*)

for all k.
We write B; for B(x, p') and 7; for 7, ). Let

a; = inf h, b; = sup h.
B; B,

Suppose b; — a; < M~* for all i < k; we want to show

bk+1 — Af+1 S M’yk+1. (715)

We have a, < h < b, on Bpyq. Let
A = {Z € Bk+1 : h(Z) < (CLk + bk)/Q}

We may suppose |A'|/|By1] > %, for if not we look at M — h instead of h.
Let A be a compact set contained in A’ with |A|/|Byi1| > 3. Let e > 0, pick
y € Byyq with h(y) > bryq — €, and pick z € B,y with h(z2) < ag1 + €.

By optional stopping

= Ey[h<XTA) — h(Z);TA < Tk]
+EY[h(X,,) = h(2); T < Ta, X7, € Bip_i]

+ Y EY[A(X,,) = h(2); 7k < T, Xy, € Br_io1 — Bii].
=1

The first term on the right is bounded by

<ak+bk

5 — ak>Py(TA < Tk).

The second term is bounded by

(bk,1 — ak,l)IP’y(Tk < TA> = (bk,1 — &kfl)(l — Py(TA < Tk)).
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Using (7.13) the infinite sum is bounded by

oo

Z(bk—i—l —ap—i—1)PY(X,, & Bi—;)

=1

<) e MARTT () (o)
=1

= s My (%))

i=1

Therefore
h(y) = h(z)
1
S E(bk — ak)IF’y(TA < Tk) + (bk—l - ak_l)(l - ]Py(TA < Tk)) + CQM’}/k/éL

1 /1 1
< Mfyk<— _ (— _ —)IP’y(TA < Tk)> + ey MA* /4

YNy 2
1 1 1
S M’)/k(— — (— - —)Cg) +CgM’7k/4.
Yoo\ 2
Since v < 1 and
3coy Co 9
1— <1— ==
2+ 4 = 4 ’77
then
1 (1 1) +02<
_— ___C —_—
v v 2 2 4_77
and so

h(y) — h(z) < MA**
We conclude that
b1 — a1 < MAM 4+ 2.
Since ¢ is arbitrary, this proves (7.15) and hence (7.14).

If 2,y € B(xo,1), let k be the smallest integer such that |z — y| < p*.
Then log |z — y| > (k+ 1)logp, y € B(z, p*), and

[A(y) — h@)| < My" = Metlen

< C4Melog|x—y|(logv/1ogp) — c4M]x _ yllogv/logp_
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Define -
Shg(z) = Ex/ e Mg(X,)dt.
0

Proposition 7.14 Suppose g is bounded and has compact support. There
exists ¢y > 2 and € (0,1) such that

1S0g(x) = Sog(y)] < er([|Soglloe + [lglloo) (J2 =y A )7

Proof. Suppose |x — y| < 1, for otherwise there is nothing to prove. We
write

TB(x,r)
Soglx) = E° / 9(X.)ds + E*Sog(Xoy, )
0

and
TB(x,r)

Sog(y) = Ey/ 9(Xs)ds +EYSog( Xy, )-
0

Taking the difference,

z |Q§' B y| A
’SOQ(J;) - Sog(y)| < 2||g||oosup]E TB(z,r) + C2||SOg||oo< ’ ) 5

using the previous theorem, scaling, and the fact that z — E*Syg(X
1/2

TB(.’L‘,T‘))
is L-harmonic inside B(z,r). Taking r = |z — y|'/* and using a lemma, we
obtain our result. O

Theorem 7.15 Suppose g is bounded and X > 0. There exists ¢; > 0 and
B € (0,1) such that

[Sxg(2) = Srg(W)| < crllglloo(lz =yl A1)

Proof. Without loss of generality assume g > 0. Temporarily assume
g has compact support. Let h = g — AS\g. Note Sph < Spg + AS\Sog,
so h is bounded. We have S\g = Sph by the resolvent equation. Since
1900 lo0 < 29|00, then [[Sohllco + [[2]loo < €3]|g||oo. Our result now follows
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by a proposition if ¢ has compact support. Taking limits allows us to remove
this restriction. |

The solution to the integral equation
Lu(z) — Iu(z) = —g(x)

is given by u(z) = Syg(z). So our theorem provides a regularity result for
the solutions of such integral equations.



Chapter 8

Symmetric jump processes

8.1 Dirichlet forms

Let us now suppose S is a locally compact separable metric space together
with a o-finite measure m defined on the Borel subsets of S. We want to
give a definition of Dirichlet form in this more general context. We suppose
there exists a dense subset D = D(E) of L*(S, m) and a non-negative bilinear
symmetric form £ defined on D x D, which means

E(f.9)=Eg. f), E(f+g.h)=E(f h)+E(g,h)
E(af,g) =al(f,g9), E(f,f)=>0

for f,g,h € D, a € R.
We will frequently write (f, g) for [ f(z)g(x)m(dx). For a > 0 define

ga(f;f):g(f;f)+a<f;f>

We can define a norm on D using the inner product &,: the norm of f equals
(E(f, £))Y/?; we call this the norm induced by &,. Since a(f, f) < E.(f, ),
then

ga(faf)Sgb(f7f):ga(fvf)+(b_a)<f7f>
< (1+=Yern

113
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if a < b, so the norms induced by different a’s are all equivalent. We say & is
closed if D is complete with respect to the norm induced by &, for some a.
Equivalently, £ is closed if whenever u,, € D satisfies & (wy, — U, Up —Uy,) — 0
as m,m — 0o, then there exists v € D such that &(u, — u,u, —u) — 0 as
n — oo.

We say & is Markovian if whenever u € D, then v =0V (u A 1) € D and
E(v,v) < E(u,u). (A slightly weaker definition of Markovian is sometimes
used.) A Dirichlet form is a non-negative bilinear symmetric form that is
closed and Markovian.

Absorbing Brownian motion on [0, 00) is a symmetric process. The corre-
sponding Dirichlet form is

E(f f) =1 / TP (@) d,

and the appropriate domain turns out to be the completion of the set of C*
functions with compact support contained in (0, 00) with respect to the norm
induced by &;. In particular, any function with compact support contained
in (0,00) will be zero in a neighborhood of 0. In a domain D in higher
dimensions, the Dirichlet form for absorbing Brownian motion becomes

E(F.f) = / V(@) de, (8.1)

with the domain of £ being the completion with respect to & of the C!
functions whose support is contained in the interior of D.

Reflecting Brownian motion is also a symmetric process. For a domain
D, the Dirichlet form is given by (8.1) and the domain D(E) of the form is
given by the completion with respect to the norm induced by &; of the C*
functions on D with compact support, where D is the closure of D. One
might expect there to be some restriction on the normal derivative df/0n on
the boundary of D, but in fact there is no such restriction. To examine this
further, consider the case of D = (0, 00). If one takes the class of functions f
which are C* with compact support and with f/(0) = 0 and takes the closure
with respect to the norm induced by &7, one can show that one gets the same
class as D(E).

One nice consequence of the fact that one doesn’t need to impose a re-
striction on the normal derivative in the domain of £ for reflecting Brownian
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motion is that this allows us to define reflecting Brownian motion in any
domain, even when the boundary is not smooth enough for the notion of
normal derivative to be defined.

8.2 Construction of the semigroup

We now want to construct the resolvent corresponding to a Dirichlet form.
We are going to arrange things so that

Ea(Raf,9) = (f,9) (8.2)

for all @ > 0 and all f, g such that R, f,g € D. Our Banach space B will be
L*(8,m). An operator T is symmetric if (T'f, g) = (f,Tg).

Recall the Hille-Yosida theorem says that if £ is a densely defined un-
bounded operator such that Ry = (A — £)™! exists for all real A > 0 and
|IRx|]| < 1/A, then L is the infinitesimal generator of a strongly continu-
ous semigroup of contractions whose resolvents are Ry. Strongly continuous
means that P,f — f in norm as ¢ — 0 for every f in the Banach space,

contraction means ||F|| < 1, and saying R, is the resolvent means that
Ryf = fooo e MP,fdt for all f.

An alternate phrasing is that if Ry, A > 0 is a collection of bounded oper-
ators such that the resolvent identity holds, that is, R, — R, = (b — a) R, Ry,
we have ||Ry|| < 1/A, and the range of R, is dense in the Banach space, then
there exists a strongly continuous semigroup of contractions whose resolvents
are R).

Theorem 8.1 If £ is a Dirichlet form, there exists a family of resolvent
operators { Ry} such that

(1) the Ry satisfy the resolvent equation,

(2) |ARA|| < 1 for all A > 0,

(3) AR\f — [ as A — oo,

(4) Ea(Raf.9) = (f,9) ifa >0, R.f,g €D,

(5) Ry is a symmetric operator if a > 0,

(6) every function in the domain of the infinitesimal generator L is in Ry(B),
where B is the Banach space,

(7) (Lf,g) = —=E(f,g) if [ isin the domain of L and g € D(E).
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Proof. Fix f € B and define a linear functional on B by I(g) = (f, g). This
functional is also a bounded linear functional on D with respect to the norm
induced by &,, that is, there exists ¢ such that |I(g)] < c€.(g,9)"/%. This
follows because

(9)] = \/fg\ <N )" < NP GENg.9)?

by the Cauchy-Schwarz inequality. Since £ is closed, D is a Hilbert space with
respect to the norm induced by &,. By the Riesz representation theorem for
Hilbert spaces, there exists a unique element u € D such that I(g) = &,(u, g)
for all g € D. We set R,f = u. In particular, (8.2) holds, and R,f € D.

We show the resolvent equation holds. If g € D,

Ea(Rof — Rof,9) = Ea(Raf,9) — E(Ruf.9) — a(Ryf, g)

= (f,9) —ERf,9) —b{(Rof,g) + (b—a)(Ruf. )
=(f.9) = &(Rof,9) + (b— a)(Rof, )
= (b—a)(Ruf, g)
=&((b—a)R.Ryf, 9).

Since this holds for all ¢ € D and D is dense in B, then R,f — Ryf =

(b—a)R.Ryf.

Next we show that [[aR,f|| < | f|l, or equivalently,

(aR.f,alof) < (f, f). (8.3)

If (R.f, Rof) is zero, then (8.3) trivially holds, so suppose it is positive. We
have

@(Raf, Rof) < Eu(Rof, Raf) = (f. Raf) < (£, )7 (Raf, Raf)"
by (8.2) and the Cauchy-Schwarz inequality. If we now divide both sides by
(Rof, Rof)""* and then square both sides, we obtain (8.3).

We show that bR,f — f as b — oo when f € B. If f € D, then by the
Cauchy-Schwarz inequality and (8.3)

(bRof. f) < (ORuf DR (F. 1)
< (£.5).
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Using this,

b(bRyf — f,bRyf — f) < EbRyf — f,bRyf — f)
= V(R f, Ry f) — 2bE(Rof, f) + E(f. f)
<&(f 1)
Now divide both sides by b to get ||[bRyf — f|[* < E(f, f)/b — 0 as b — .

Since D is dense in B and ||bRy|| < 1 for all b, we conclude bR, f — f for all
feB.

To see the symmetry, we have
(fs Rag) = Ea(Raf, Rag) = Ea(Rag, Raf) = (9, Raf)-

If f is in the domain of the infinitesimal generator, then h = Lf is in
the Banach space, and hence \f —h = (A — L) f is in the Banach space B,
which implies h = Ry(Af — h). Thus every function in the domain of the
infinitesimal generator is in Ry(B).

If f = Ryh, then £f = ARyh — h, and then

(Lf,9) = MRxh,g) — (h,g).

We have
(h,g) = Ex(RAh, g) = E(RA, g) + A(Rah, g).

Solving,
E(f.g) = E(Rrh, g) = (h,g) — M(Rh, g).

Theorem 8.2 If f € B satisfies 0 < f(x) <1, m-a.e., then for all a > 0

0<aR.f <1, m— a.e. (8.4)

Proof. Fix f € Bwith 0 < f <1, m-a.e., and let a > 0. Define a functional
1 on D by
f f

Y(v) = E(v,v) +a<v - —>.

a
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We claim
Y(Rof) + Ea(Raf —v,Raf —v) =¢(v), wveD. (8.5)

To see this, start with the left hand side, which is equal to

E(Ruf Ruf) + a{ Ruf =~ f Raf = ) + EulBuf = v, Raf —0)

= Eu(Raf, Raf) = 2RSS + o f, ) + EulRuf. Ruf)
—2E,(Rof,v) + E(v,v)
= () =20, 0) + E(0,0) + alv,o)
— ().
If follows from (8.5) and the fact that &,(g, g) is non-negative for any g € D
that R, f is the function that minimizes .

Set ¢(x) =0V (x A (1/a)) and let w = ¢(R,f). Observe that |(t) — s| <
|t —s| for t € R and s € [0,1/a], so

@)~ L2 < | Ry - L2

a

and therefore

oot Dl fag-y s
Since &€ is Markovian, then aw = 0V ((aR,f) A 1), which leads to
£, w) < E(aRuf, aRaf) = E(Rof, Ruf). 57)

Adding (8.6) and (8.7), we conclude ¥(w) < (R.f). Since R,f is the
minimizer for ¢, then w = R, f, m-a.e. But 0 < w < 1/a, and hence aR, f
takes values in [0, 1], m-a.e. O

Corollary 8.3 (1) If0 < f <1, m-a.e., then 0 < B,f <1, m-a.e.
(2) P, is a symmetric operator.
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Proof. If 0 < f <1, m-ae., then 0 < bR, f < 1, m-a.e, by Theorem 8.1,
and iterating, 0 < (bRp)'f < 1, m-a.e., for every i. Using the proof of the
Hille-Yosida theorem,

[e.e]

Q) f(x) = e "> (bt)'(bRy) f(x)/i!,

1=0

which will be non-negative, m-a.e., and bounded by e~ 3~ (bt)!/il, m- a.e.
Passing to the limit as b — oo, we see that P, f takes values in [0, 1], m-a.e.

The proof of the symmetry of P, is similar. |

When it comes to using the semigroup P, derived from a Dirichlet form
to construct a Markov process X, there is a difficulty that we did not have
before. Since P, is constructed using an L? procedure, P, f is defined only
up to almost everywhere equivalence. Without some continuity properties
of P, f for enough f’s, we must neglect some null sets. If the only null sets
we could work with were sets of m-measure 0, we would be in trouble. For
example, when § is the plane and m is two-dimensional Lebesgue measure,
the x axis has measure zero, but a continuous process will (in general) hit the
x axis. Fortunately there is a notion of sets of capacity zero, which are null
sets that are smaller than sets of measure zero. It is possible to construct
a process X starting from all points z in S except for those in a set N of
capacity zero and to show that starting from any point not in A, the process
never hits N.

There is another difficulty when working with Dirichlet forms. In general,
one must look at &, a certain compactification of &, which is a compact
set containing S. Even when our state space is a domain in R?, S is not
necessarily equal to S, the Euclidean closure of S, and one must work with
S instead of S. It can be shown that this problem will not occur if the
Dirichlet form is regular. Let Cx be the set of continuous functions with
compact support. A Dirichlet form & is reqular if DN Ck is dense in D with
respect to the norm induced by & and D N Ck also is dense in Cx with
respect to the supremum norm.
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8.3 Symmetric jump processes

We are going to define

E(f,g) _ /Rd /Rd [f(y) B f(x” [g<y) _g(x)]A(x,y) dydx,

’x _ y’d+a

where A is symmetric and bounded above and below by positive constants,
but first we need to specify the domain.

Define
o) =l ([, [T by apig

Let us show that if f € C? with compact support, say in B(0, M) with
M > 2, then v(f) is finite. Let |A| be the Lebesgue measure of a set A.

Fix = and first suppose |z| > 3M. The numerator of the second integral in
the definition of v(f) is 0 unless y € B(0, M), and in that case |z — y|¢t® <
c|z|¢te. So for |x| > 3M we can bound the inside integral by

/ TG g < ) 4110 BO, M) ]

sl [2] e

This is integrable over |z| > 3M.
Now suppose |z| < 3M. Since f € C?,

£ (y) — f(@)P? e |z —yf?
I3 <7 [ s

|I - y|d+a lz—y|<1 |LE -
1

4 2||f||§o/ 4
|lz—y|>1 |1’ - y|d+a

which is bounded by a constant depending on f. So the integral over
B(0,3M) is finite. Therefore v(f) is finite.

We now let D be the completion of C%, the C* functions with compact
support, with respect to the norm v(f).

We suppose A(x,y) = A(y, z) for all z and y and

0<c <Alz,y) <cp <
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for constants ¢y, co. That £ is bilinear, symmetric, and E(f, f) > 0 is obvious.
That & is closed follows easily because &,(f, f) is comparable to v(f).

It remains to show &£ is Markovian. If g = (f A 1) V 0, note that

l9(y) — g(x)| < [f(y) — f(=)].

It then follows easily that £(g,9) < E(f, f).

We note that £ is regular by the way the domain of £ was constructed.

8.4 The Poincaré and Nash inequalities

Let Q = Qy = [~h/2,h/2]%. Define

1
S d
fo ’Q‘/Qf(y) Y

Theorem 8.4 (Poincaré inequality) There exists a constant ¢ such that

(fly) = f(x))?
fly) - f !2dy§ch“// dy dz.
/;‘() Q 0Jo |£C—y|d+o‘
Proof. Let’s first do the case h = 1. We write

/Q/Q[f(y>_ dydl"—// )* = 2f(2)f(y) + f(2)*] dy dz

:2/Qf(x) dx—zfoQ:2/Q(f—fQ)2-

Since |r — y|¢T* > c on Q x Q, the left hand side is less than or equal to

g e

The case of general h is done by a scaling argument (apply the above to
g(x) = f(z/h) and use a change of variables). O
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Before proving the Nash inequality, observe that

gel =g | [ [ < 0 [ s

We will also use the inequality that if all the a; > 0, then

2
Za? < (Zal) .
Theorem 8.5 (Nash inequality)
LI < € DIFIR.

Proof. Break R? into cubes Q1, Qs, . . . whose union is R% and whose interiors
are pairwise disjoint. Note

1 1

|Qz| Ql(f<x)_sz> = |Qz| Qlf(ﬁ) dCU—(fQZ)

Then

1= [ srar =3 [ sty
=g [, S

= no / )~ fa

<§yﬂ/ 5

< ch®E(f. f) + b4 £II2.

2dz+ > b,

)>c@dx+h@(

M—M“

Now choose h so that the two terms on the last line are equal, namely,

71 /s
~ (et

Y

and we obtain
20/ (a+d) a
1715 < el FIE 08 Cr, pHiete.
Taking both sides to the power (« + d)/d gives the inequality. O
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8.5 Upper bounds on the transition densities

Notice
Rs@) =] [ s PG| < [156)1P ) = PIAE)
Since P, is symmetric, we have

[Pl = (B f] 1) < (BIFIL YD = (fL B = (f]L 1D = 11

Theorem 8.6 There exists a function p(t,z,y) such that

Pif(z) = /p(t,w,y)f(y) dy

(for almost every x) and such that p(t,z,y) < ct=Y*,

Proof. We will show
1P fll2 < et fl4

for f in the domain of the infinitesimal generator. By taking limits, this holds
for all f € L' N L% Taking f = 14 where |A| = 0, we get that || P.f]]» = 0,

or P,f =0 a.e. So
| Pitw.dn) =0
A

or Py(x,dy) is absolutely continuous with respect to Lebesgue measure. Thus
p(t,z,y), the Radon-Nikodym derivative exists (for almost every x).

Also, if g € L',
[(Bf, 9)l = [ Pl < IIF 2l Peglle < et 22 fll2llg]ls.
Taking the supremum over the set of g € L' N L? with ||g||; < 1, we obtain
1P lloo < ct= 22| £l
Then

1P flloo = 1P j2(Peyaf)lloe < ct™ 2| Pyafllz < et f]1.
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Letting f = 14, we have
[ ptaydy < et ea,
A

and the bound on p(t, z,y) follows.
Now let f € C%. f is in the domain of the infinitesimal generator, so P; f

is also. Suppose ||f|l1 =1, so that |P;f||; < 1. Let
E(t) = /Ptf(a:)2 dx.

Using the Nash inequality and the fact that E(f, f), which has an A(z,y)

term, is comparable to
(f(y) — f(z))
dy d
// z — y|dro yax,

B0 = [2nf@) 5P e =2 [ PI@LA @) b
— —28(P,f, Pf) —c// S |x_y|d+a(x)) dy dx

we have

< 2| PS5 = —eB() T,
So
E'(t)
Y < _e
E(t)l—i-a/d = ’
hence

—E{t)™ 1 < —E@t)"{+ E(0)"%? < —ct,

and therefore
BE(t) < ct~¥e,

By linearity,
1PfI3 < et fIE.



