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Chapter 1

Poisson processes

1.1 Definitions

Let (Ω,F ,P) be a probability space. A filtration is a collection of σ-fields Ft
contained in F such that Fs ⊂ Ft whenever s < t. A filtration satisfies the
usual conditions if it is complete: N ∈ Ft for all t whenever P(N) = 0 and
it is right continuous: Ft+ = Ft for all t, where Ft+ = ∩ε>0Ft+ε.

Definition 1.1 Let {Ft} be a filtration, not necessarily satisfying the usual
conditions. A Poisson process with parameter λ > 0 is a stochastic process
X satisfying the following properties:

(1) X0 = 0, a.s.

(2) The paths of Xt are right continuous with left limits.

(3) If s < t, then Xt − Xs is a Poisson random variable with parameter
λ(t− s).

(4) If s < t, then Xt −Xs is independent of Fs.

Define Xt− = lims→t,s<tXs, the left hand limit at time t, and ∆Xt =
Xt −Xt−, the size of the jump at time t. We say a function f is increasing
if s < t implies f(s) ≤ f(t). We use ‘strictly increasing’ when s < t implies
f(s) < f(t). We have the following proposition.

1
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Proposition 1.2 Let X be a Poisson process. With probability one, the
paths of Xt are increasing and are constant except for jumps of size 1. There
are only finitely many jumps in each finite time interval.

Proof. For any fixed s < t, we have that Xt − Xs has the distribution of
a Poisson random variable with parameter λ(t − s), hence is non-negative,
a.s.; let Ns,t be the null set of ω’s where Xt(ω) < Xs(ω). The set of pairs
(s, t) with s and t rational is countable, and so N = ∪s,t∈Q+Ns,t is also a null
set, where we write Q+ for the non-negative rationals. For ω /∈ N , Xt ≥ Xs

whenever s < t are rational. In view of the right continuity of the paths of
X, this shows the paths of X are increasing with probability one.

Similarly, since Poisson random variables only take values in the non-
negative integers, Xt is a non-negative integer, a.s. Using this fact for every
t rational shows that with probability one, Xt takes values only in the non-
negative integers when t is rational, and the right continuity of the paths
implies this is also the case for all t. Since the paths have left limits, there
can only be finitely many jumps in finite time.

It remains to prove that ∆Xt is either 0 or 1 for all t. Let t0 > 0.
If there were a jump of size 2 or larger at some time t strictly less than
t0, then for each n sufficiently large there exists 0 ≤ kn ≤ 2n such that
X(kn+1)t0/2n −Xknt0/2n ≥ 2. Therefore

P(∃s < t0 : ∆Xs ≥ 2) ≤ P(∃k ≤ 2n : X(k+1)t0/2n −Xkt0/2n ≥ 2) (1.1)

≤ 2n sup
k≤2n

P(X(k+1)t0/2n −Xkt0/2n ≥ 2)

= 2nP(Xt0/2n ≥ 2n)

≤ 2n(1− P(Xt0/2n = 0)− P(Xt0/2n = 1))

= 2n
(

1− e−λt0/2n − (λt0/2
n)e−λt0/2

n
)
.

We used Definition 1.1(3) for the two equalities. By l’Hôpital’s rules, (1 −
e−x − xe−x)/x → 0 as x → 0. We apply this with x = λt0/2

n, and see that
the last line of (1.1) tends to 0 as n → ∞. Since the left hand side of (1.1)
does not depend on n, it must be 0. This holds for each t0.
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1.2 Stopping times

Throughout this section we suppose we have a filtration {Ft} satisfying the
usual conditions.

Definition 1.3 A random variable T : Ω→ [0,∞] is a stopping time if for
all t, (T < t) ∈ Ft. We say T is a finite stopping time if T < ∞, a.s. We
say T is a bounded stopping time if there exists K ∈ [0,∞) such that T ≤ K,
a.s.

Note that T can take the value infinity. Stopping times are also known as
optional times.

Given a stochastic process X, we define XT (ω) to be equal to X(T (ω), ω),
that is, for each ω we evaluate t = T (ω) and then look at X(·, ω) at this
time.

Proposition 1.4 Suppose Ft satisfies the usual conditions. Then

(1) T is a stopping time if and only if (T ≤ t) ∈ Ft for all t.

(2) If T = t, a.s., then T is a stopping time.

(3) If S and T are stopping times, then so are S ∨ T and S ∧ T .

(4) If Tn, n = 1, 2, . . ., are stopping times with T1 ≤ T2 ≤ · · · , then so is
supn Tn.

(5) If Tn, n = 1, 2, . . ., are stopping times with T1 ≥ T2 ≥ · · · , then so is
infn Tn.

(6) If s ≥ 0 and S is a stopping time, then so is S + s.

Proof. We will just prove part of (1), leaving the rest as an exercise. Note
(T ≤ t) = ∩n≥N(T < t + 1/n) ∈ Ft+1/N for each N . Thus (T ≤ t) ∈
∩NFt+1/N ⊂ Ft+ = Ft.

It is often useful to be able to approximate stopping times from the right.
If T is a finite stopping time, that is, T <∞, a.s., define

Tn(ω) = (k + 1)/2n if k/2n ≤ T (ω) < (k + 1)/2n. (1.2)
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Define

FT = {A ∈ F : for each t > 0, A ∩ (T ≤ t) ∈ Ft}. (1.3)

This definition of FT , which is supposed to be the collection of events that
are “known” by time T , is not very intuitive. But it turns out that this
definition works well in applications.

Proposition 1.5 Suppose {Ft} is a filtration satisfying the usual conditions.

(1) FT is a σ-field.

(2) If S ≤ T , then FS ⊂ FT .

(3) If FT+ = ∩ε>0FT+ε, then FT+ = FT .

(4) If Xt has right continuous paths, then XT is FT -measurable.

Proof. If A ∈ FT , then Ac ∩ (T ≤ t) = (T ≤ t) \ [A ∩ (T ≤ t)] ∈ Ft, so
Ac ∈ FT . The rest of the proof of (1) is easy.

Suppose A ∈ FS and S ≤ T . Then A∩ (T ≤ t) = [A∩ (S ≤ t)]∩ (T ≤ t).
We have A ∩ (S ≤ t) ∈ Ft because A ∈ FS, while (T ≤ t) ∈ Ft because T is
a stopping time. Therefore A ∩ (T ≤ t) ∈ Ft, which proves (2).

For (3), if A ∈ FT+, then A ∈ FT+ε for every ε, and so A∩(T+ε ≤ t) ∈ Ft
for all t. Hence A∩(T ≤ t−ε) ∈ Ft for all t, or equivalently A∩(T ≤ t) ∈ Ft+ε
for all t. This is true for all ε, so A∩ (T ≤ t) ∈ Ft+ = Ft. This says A ∈ FT .

(4) Define Tn by (1.2). Note

(XTn ∈ B) ∩ (Tn = k/2n) = (Xk/2n ∈ B) ∩ (Tn = k/2n) ∈ Fk/2n .

Since Tn only takes values in {k/2n : k ≥ 0}, we conclude (XTn ∈ B) ∩
(Tn ≤ t) ∈ Ft, and so (XTn ∈ B) ∈ FTn ⊂ FT+1/2n . Hence XTn is FT+1/2n

measurable. If n ≥ m, then XTn is measurable with respect to FT+1/2n ⊂
FT+1/2m . Since XTn → XT , then XT is FT+1/2m measurable for each m.
Therefore XT is measurable with respect to FT+ = FT .

1.3 Markov properties

Let us begin with the Markov property.
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Theorem 1.6 Let {Ft} be a filtration, not necessarily satisfying the usual
conditions, and let P be a Poisson process with respect to {Ft}. If u is a
fixed time, then Yt = Pt+u − Pu is a Poisson process independent of Fu.

Proof. Let Gt = Ft+u. It is clear that Y has right continuous paths,
is zero at time 0, has jumps of size one, and is adapted to {Gt}. Since
Yt − Ys = Pt+u − Ps+u, then Yt − Ys is a Poisson random variable with mean
λ(t− s) that is independent of Fs+u = Gs.

The strong Markov property is the Markov property extended by replacing
fixed times u by finite stopping times.

Theorem 1.7 Let {Ft} be a filtration, not necessarily satisfying the usual
conditions, and let P be a Poisson process adapted to {Ft}. If T is a finite
stopping time, then Yt = PT+t − PT is a Poisson process independent of FT .

Proof. We will first show that whenever m ≥ 1, t1 < · · · < tm, f is a
bounded continuous function on Rm, and A ∈ FT , then

E [f(Yt1 , . . . , Ytm);A] = E [f(Pt1 , . . . , Ptm)]P(A). (1.4)

Once we have done this, we will then show how (1.4) implies our theorem.

To prove (1.4), define Tn by (1.2). We have

E [f(PTn+t1 − PTn , . . . , PTn+tm − PTn);A] (1.5)

=
∞∑
k=1

E [f(PTn+t1 − PTn , . . . , PTn+tm − PTn);A, Tn = k/2n]

=
∞∑
k=1

E [f(Pt1+k/2n − Pk/2n , . . . , Ptm+k/2n − Pk/2n);A, Tn = k/2n].

Following the usual practice in probability that “,” means “and,” we use
“E [· · · ;A, Tn = k/2n]” as an abbreviation for “E [· · · ;A ∩ (Tn = k/2n)].”
Since A ∈ FT , then A∩ (Tn = k/2n) = A∩ ((T < k/2n)\ (T < (k−1)/2n)) ∈
Fk/2n . We use the independent increments property of Poisson process and



6 CHAPTER 1. POISSON PROCESSES

the fact that Pt−Ps has the same law as Pt−s to see that the sum in the last
line of (1.5) is equal to

∞∑
k=1

E [f(Pt1+k/2n − Pk/2n , . . . , Ptm+k/2n − Pk/2n)]P(A, Tn = k/2n)

=
∞∑
k=1

E [f(Pt1 , . . . , Ptm)]P(A, Tn = k/2n)

= E [f(Pt1 , . . . , Ptm)]P(A),

which is the right hand side of (1.4). Thus

E [f(PTn+t1 − PTn , . . . ,PTn+tm − PTn);A] (1.6)

= E [f(Pt1 , . . . , Ptm)]P(A).

Now let n→∞. By the right continuity of the paths of P , the bounded-
ness and continuity of f , and the dominated convergence theorem, the left
hand side of (1.6) converges to the left hand side of (1.4).

If we take A = Ω in (1.4), we obtain

E [f(Yt1 , . . . , Ytm)] = E [f(Pt1 , . . . , Ptm)]

whenever m ≥ 1, t1, . . . , tm ∈ [0,∞), and f is a bounded continuous function
on Rm. This implies that the finite dimensional distributions of Y and P are
the same. Since Y has right continuous paths, Y is a Poisson process.

Next take A ∈ FT . By using a limit argument, (1.4) holds whenever f is
the indicator of a Borel subset B of Rd, or in other words,

P(Y ∈ B,A) = P(Y ∈ B)P(A) (1.7)

whenever B is a cylindrical set.

When we discuss the Skorokhod topology, we will be able be more precise
for the independence argument.

Observe that what was needed for the above proof to work is not that P
be a Poisson process, but that the process P have right continuous paths and
that Pt − Ps be independent of Fs and have the same distribution as Pt−s.
We therefore have the following corollary.
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Corollary 1.8 Let {Ft} be a filtration, not necessarily satisfying the usual
conditions, and let X be a process adapted to {Ft}. Suppose X has paths
that are right continuous with left limits and suppose Xt−Xs is independent
of Fs and has the same law as Xt−s whenever s < t. If T is a finite stopping
time, then Yt = XT+t−XT is a process that is independent of FT and X and
Y have the same law.

1.4 A characterization

Another characterization of the Poisson process is as follows. Let T1 = inf{t :
∆Xt = 1}, the time of the first jump. Define Ti+1 = inf{t > Ti : ∆Xt = 1},
so that Ti is the time of the ith jump.

Proposition 1.9 The random variables T1, T2 − T1, . . . , Ti+1 − Ti, . . . are
independent exponential random variables with parameter λ.

Proof. In view of Corollary 1.8 it suffices to show that T1 is an exponential
random variable with parameter λ. If T1 > t, then the first jump has not
occurred by time t, so Xt is still zero. Hence

P(T1 > t) = P(Xt = 0) = e−λt,

using the fact that Xt is a Poisson random variable with parameter λt.

We can reverse the characterization in Proposition 1.9 to construct a Pois-
son process. We do one step of the construction, leaving the rest as an
exercise.

Let U1, U2, . . . be independent exponential random variables with param-
eter λ and let Tj =

∑j
i=1 Ui. Define

Xt(ω) = k if Tk(ω) ≤ t < Tk+1(ω). (1.8)

An examination of the densities shows that an exponential random variable
has a gamma distribution with parameters λ and r = 1, so Tj is a gamma
random variable with parameters λ and j. Thus

P(Xt < k) = P(Tk > t) =

∫ ∞
t

λe−λx(λx)k−1

Γ(k)
dx.
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Performing the integration by parts repeatedly shows that

P(Xt < k) =
k−1∑
i=0

e−λt
(λt)i

i!
,

and so Xt is a Poisson random variable with parameter λt.

We will use the following proposition later.

Proposition 1.10 Let {Ft} be a filtration satisfying the usual conditions.
Suppose X0 = 0, a.s., X has paths that are right continuous with left limits,
Xt−Xs is independent of Fs if s < t, and Xt−Xs has the same law as Xt−s
whenever s < t. If the paths of X are piecewise constant, increasing, all the
jumps of X are of size 1, and X is not identically 0, then X is a Poisson
process.

Proof. Let T0 = 0 and Ti+1 = inf{t > Ti : ∆Xt = 1}, i = 1, 2, . . .. We will
show that if we set Ui = Ti−Ti−1, then the Ui’s are i.i.d. exponential random
variables.

By Corollary 1.8, the Ui’s are independent and have the same law. Hence
it suffices to show U1 is an exponential random variable. We observe

P(U1 > s+ t) = P(Xs+t = 0) = P(Xs+t −Xs = 0, Xs = 0)

= P(Xt+s −Xs = 0)P(Xs = 0) = P(Xt = 0)P(Xs = 0)

= P(U1 > t)P(U1 > s).

Setting f(t) = P(U1 > t), we thus have f(t + s) = f(t)f(s). Since f(t) is
decreasing and 0 < f(t) < 1, we conclude P(U1 > t) = f(t) = e−λt for some
λ > 0, or U1 is an exponential random variable.

1.5 Martingales

We define continuous time martingales. Let {Ft} be a filtration, not neces-
sarily satisfying the usual conditions.
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Definition 1.11 Mt is a continuous time martingale with respect to the fil-
tration {Ft} and the probability measure P if

(1) E |Mt| <∞ for each t;

(2) Mt is Ft measurable for each t;

(3) E [Mt | Fs] = Ms, a.s., if s < t.

Part (2) of the definition can be rephrased as saying Mt is adapted to Ft.
If in part (3) “=” is replaced by “≥,” then Mt is a submartingale, and if it
is replaced by “≤,” then we have a supermartingale.

Taking expectations in Definition 1.11(3), we see that if s < t, then EMs ≤
EMt is M is a submartingale and EMs ≥ EMt if M is a supermartingale.
Thus submartingales tend to increase, on average, and supermartingales tend
to decrease, on average.

If Pt is a Poisson process with index λ, then Pt − λt is a continuous time
martingale. To see this,

E [Pt − λt | Fs] = E [Pt − Ps | Fs]− λt+ Ps

= E [Pt − Ps]− λt+ Ps

= λ(t− s) = λt+ Ps

= Ps − λs.

We give another example of a martingale.

Example 1.12 Recall that given a filtration {Ft}, each Ft is contained in
F , where (Ω,F ,P) is our probability space. Let X be an integrable F mea-
surable random variable, and let Mt = E [X | Ft]. Then

E [Mt | Fs] = E [E [X | Ft] | Fs] = E [X | Fs] = Ms,

and M is a martingale.

We derive the analogs of Doob’s inequalities in the stochastic process
context.

Theorem 1.13 Suppose Mt is a martingale or non-negative submartingale
with paths that are right continuous with left limits. Then
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(1)
P(sup

s≤t
|Ms| ≥ λ) ≤ E |Mt|/λ.

(2) If 1 < p <∞, then

E [sup
s≤t
|Ms|]p ≤

( p

p− 1

)p
E |Mt|p.

Proof. We will do the case where Mt is a martingale, the submartingale
case being nearly identical. Let Dn = {kt/2n : 0 ≤ k ≤ 2n}. If we set

N
(n)
k = Mkt/2n and G(n)

k = Fkt/2n , it is clear that {N (n)
k } is a discrete time

martingale with respect to {G(n)
k }. Let An = {sups≤t,s∈Dn |Ms| > λ}. By

Doob’s inequality for discrete time martingales,

P(An) = P(max
k≤2n
|N (n)

k | > λ) ≤ E |N (n)
2n |
λ

=
E |Mt|
λ

.

Note that the An are increasing, and since Mt is right continuous,

∪nAn = {sup
s≤t
|Ms| > λ}.

Then
P(sup

s≤t
|Ms| > λ) = P(∪nAn) = lim

n→∞
P(An) ≤ E |Mt|/λ.

If we apply this with λ replaced by λ− ε and let ε→ 0, we obtain (1).

The proof of (2) is similar. By Doob’s inequality for discrete time martin-
gales,

E [ sup
k≤2n
|N (n)

k |
p] ≤

( p

p− 1

)p
E |N (n)

2n |p =
( p

p− 1

)p
E |Mt|p.

Since supk≤2n |N
(n)
k |p increases to sups≤t |Ms|p by the right continuity of M ,

(2) follows by Fatou’s lemma.

Here is an example. If Pt is a Poisson process of index λ, then Pt − λt is
a martingale. So ea(Pt−λt) is a submartingale for any real number a. Then

P(sup
s≤t

Ps − λs ≥ A) = P(sup
s≤t

ea(Ps−λs >≥ eaA) ≤ e−aAE eaPte−aλt.
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We know
E eaPt = exp

(
(ea − 1)λt

)
.

We substitute this in the above and then optimize over a.

We will need Doob’s optional stopping theorem for continuous time mar-
tingales.

Theorem 1.14 Let {Ft} be a filtration satisfying the usual conditions. If Mt

is a martingale or non-negative submartingale whose paths are right contin-
uous, supt≥0 EM2

t <∞, and T is a finite stopping time, then EMT ≥ EM0.

Proof. We do the submartingale case, the martingale case being very similar.
By Doob’s inequality (Theorem 1.13(1)),

E [sup
s≤t

M2
s ] ≤ 4EM2

t .

Letting t→∞, we have E [supt≥0M
2
t ] <∞ by Fatou’s lemma.

Let us first suppose that T < K, a.s., for some real number K. Define
Tn by (1.2). Let N

(n)
k = Mk/2n , G(n)

k = Fk/2n , and Sn = 2nTn. By Doob’s

optional stopping theorem applied to the submartingale N
(n)
k , we have

EM0 = EN (n)
0 ≤ EN (n)

Sn
= EMTn .

Since M is right continuous, MTn → MT , a.s. The random variables |MTn|
are bounded by 1+supt≥0M

2
t , so by dominated convergence, EMTn → EMT .

We apply the above to the stopping time T ∧K to get EMT∧K ≥ EM0.
The random variables MT∧K are bounded by 1+supt≥0M

2
t , so by dominated

convergence, we get EMT ≥ EM0 when we let K →∞.

We present the continuous time version of Doob’s martingale convergence
theorem. We will see that not only do we get limits as t → ∞, but also a
regularity result.

Let Dn = {k/2n : k ≥ 0}, D = ∪nDn.

Theorem 1.15 Let {Mt : t ∈ D} be either a martingale, a submartingale, or
a supermartingale with respect to {Ft : t ∈ D} and suppose supt∈D E |Mt| <
∞. Then
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(1) limt→∞Mt exists, a.s.

(2) With probability one Mt has left and right limits along D.

The second conclusion says that except for a null set, if t0 ∈ [0,∞), then
both limt∈D,t↑t0 Mt and limt∈D,t↓t0 Mt exist and are finite. The null set does
not depend on t0.

Proof. Martingales are also submartingales and if Mt is a supermartingale,
then −Mt is a submartingale, so we may without loss of generality restrict
our attention to submartingales. By Doob’s inequality,

P( sup
t∈Dn,t≤n

|Mt| > λ) ≤ 1

λ
E |Mn|.

Letting n→∞ and using Fatou’s lemma,

P(sup
t∈D
|Mt| > λ) ≤ 1

λ
sup
t

E |Mt|.

This is true for all λ, so with probability one, {|Mt| : t ∈ D} is a bounded
set.

Therefore the only way either (1) or (2) can fail is that if for some pair of
rationals a < b the number of upcrossings of [a, b] by {Mt : t ∈ D} is infinite.
Recall that we define upcrossings as follows.

Given an interval [a, b] and a submartingale M , if S1 = inf{t : Mt ≤ a},
Ti = inf{t > Si : Mt ≥ b}, and Si+1 = inf{t > Ti : Mt ≤ a}, then the number
of upcrossings up to time u is sup{k : Tk ≤ u}.

Doob’s upcrossing lemma tells us that if Vn is the number of upcrossings
by {Mt : t ∈ Dn ∩ [0, n]}, then

EVn ≤
E |Mn|
b− a

.

Letting n→∞ and using Fatou’s lemma, the number of upcrossings of [a, b]
by {Mt : t ∈ D} has finite expectation, hence is finite, a.s. If Na,b is the null
set where the number of upcrossings of [a, b] by {Mt : t ∈ D} is infinite and
N = ∪a<b,a,b∈Q+Na,b, where Q+ is the collection of non-negative rationals,
then P(N) = 0. If ω /∈ N , then (1) and (2) hold.

As a corollary we have
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Corollary 1.16 Let {Ft} be a filtration satisfying the usual conditions, and
let Mt be a martingale with respect to {Ft}. Then M has a version that is
also a martingale and that in addition has paths that are right continuous
with left limits.

Proof. Let D be as in the above proof. For each integer N ≥ 1, E |Mt| ≤
E |MN | < ∞ for t ≤ N since |Mt| is a submartingale by the conditional
expectation form of Jensen’s inequality. Therefore Mt∧N has left and right
limits when taking limits along t ∈ D. Since N is arbitrary, Mt has left and
right limits when taking limits along t ∈ D, except for a set of ω’s that form
a null set. Let

M̃t = lim
u∈D,u>t,u→t

Mu.

It is clear that M̃ has paths that are right continuous with left limits. Since
Ft+ = Ft and M̃t is Ft+ measurable, then M̃t is Ft measurable.

Let N be fixed. We will show {Mt; t ≤ N} is a uniformly integrable family
of random variables. Let ε > 0. Since MN is integrable, there exists δ such
that if P(A) < δ, then E [|MN |;A] < ε. If L is large enough, P(|Mt| > L) ≤
E |Mt|/L ≤ E |MN |/L < δ. Then

E [|Mt|; |Mt| > L] ≤ E [|MN |; |Mt| > L] < ε,

since |Mt| is a submartingale and (|Mt| > L) ∈ Ft. Uniform integrability is
proved.

Now let t < N . If B ∈ Ft,

E [M̃t;B] = lim
u∈D,u>t,u→t

E [Mu;B] = E [Mt;B].

Here we used the Vitali convergence theorem and the fact that Mt is a mar-
tingale. Since M̃t is Ft measurable, this proves that M̃t = Mt, a.s. Since N
was arbitrary, we have this for all t. We thus have found a version of M that
has paths that are right continuous with left limits. That M̃t is a martingale
is easy.

The following technical result will be used in the next chapter. A function
f is increasing if s < t implies f(s) ≤ f(t). A process At has increasing paths
if the function t→ At(ω) is increasing for almost every ω.
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Proposition 1.17 Suppose {Ft} is a filtration satisfying the usual condi-
tions and suppose At is an adapted process with paths that are increasing,
are right continuous with left limits, and A∞ = limt→∞At exists, a.s. Sup-
pose X is a non-negative integrable random variable, and Mt is a version of
the martingale E [X | Ft] which has paths that are right continuous with left
limits. Suppose E [XA∞] <∞. Then

E
∫ ∞

0

X dAs = E
∫ ∞

0

Ms dAs. (1.9)

Proof. First suppose X and A are bounded. Let n > 1 and let us write
E
∫∞

0
X dAs as

∞∑
k=1

E [X(Ak/2n − A(k−1)/2n)].

Conditioning the kth summand on Fk/2n , this is equal to

E
[ ∞∑
k=1

E [X | Fk/2n ](Ak/2n − A(k−1)/2n)
]
.

Given s and n, define sn to be that value of k/2n such that (k− 1)/2n < s ≤
k/2n. We then have

E
∫ ∞

0

X dAs = E
∫ ∞

0

Msn dAs. (1.10)

For any value of s, sn ↓ s as n→∞, and since M has right continuous paths,
Msn → Ms. Since X is bounded, so is M . By dominated convergence, the
right hand side of (1.10) converges to

E
∫ ∞

0

Ms dAs.

This completes the proof when X and A are bounded. We apply this to
X ∧ N and A ∧ N , let N → ∞, and use monotone convergence for the
general case.

The only reason we assume X is non-negative is so that the integrals make
sense. The equation (1.9) can be rewritten as

E
∫ ∞

0

X dAs = E
∫ ∞

0

E [X | Fs] dAs. (1.11)
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We also have

E
∫ t

0

X dAs = E
∫ t

0

E [X | Fs] dAs (1.12)

for each t. This follows either by following the above proof or by applying
Proposition 1.17 to As∧t.
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Chapter 2

Lévy processes

A Lévy process is a process with stationary and independent increments
whose paths are right continuous with left limits. Having stationary incre-
ments means that the law of Xt − Xs is the same as the law of Xt−s − X0

whenever s < t. Saying that X has independent increments means that
Xt −Xs is independent of σ(Xr; r ≤ s) whenever s < t.

We want to examine the structure of Lévy processes. We know three ex-
amples: the Poisson process, Brownian motion, and the deterministic process
Xt = t. It turns out all Lévy processes can be built up out of these as build-
ing blocks. We will show how to construct Lévy processes and we will give a
representation of an arbitrary Lévy process.

Recall that we use Xt− = lims<t,s→tXs and ∆Xt = Xt −Xt−.

2.1 Examples

Let us begin at looking at some simple Lévy processes. Let P j
t , j = 1, . . . , J ,

be a sequence of independent Poisson processes with parameters λj, resp.
Each P j

t is a Lévy process and the formula for the characteristic function of
a Poisson random variable shows that the characteristic function of P j

t is

E eiuP
j
t = exp(tλj(e

iu − 1)).

17
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Therefore the characteristic function of ajP
j
t is

E eiuajP
j
t = exp(tλj(e

iuaj − 1))

and the characteristic function of ajP
j
t − ajλjt is

E eiuajP tj−a)jλjt = exp(tλj(e
iuaj − 1− iuaj)).

If we let mj be the measure on R defined by mj(dx) = λjδaj(dx), where

δaj(dx) is point mass at aj, then the characteristic function for ajP
j
t can be

written as

exp
(
t

∫
R
[eiux − 1]mj(dx)

)
(2.1)

and the one for ajP
j
t − ajλjt as

exp
(
t

∫
R
[eiux − 1− iux]mj(dx)

)
. (2.2)

Now let

Xt =
J∑
j=1

ajP
j
t .

It is clear that the paths of Xt are right continuous with left limits, and
the fact that X has stationary and independent increments follows from the
corresponding property of the P j’s. Moreover the characteristic function of
a sum of independent random variables is the product of the characteristic
functions, so the characteristic function of Xt is given by

E eiuXt = exp
(
t

∫
R
[eiux − 1]m(dx)

)
(2.3)

with m(dx) =
∑J

j=1 λjδaj(dx).

The process Yt = Xt − t
∑J

j=1 ajλj is also a Lévy process and its charac-
teristic function is

E eiuYt = exp
(
t

∫
R
[eiux − 1− iux]m(dx),

)
(2.4)

again with m(dx) =
∑J

j=1 λjδaj(dx).
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Remark 2.1 Recall that if ϕ is the characteristic function of a random vari-
able Z, then ϕ′(0) = iEZ and ϕ′′(0) = −EZ2. If Yt is as in the paragraph
above, then clearly EYt = 0, and calculating the second derivative of E eiuYt
at 0, we obtain

EY 2
t = t

∫
x2m(dx).

The following lemma is a restatement of Corollary 1.8.

Lemma 2.2 If Xt is a Lévy process and T is a finite stopping time, then
XT+t −XT is a Lévy process with the same law as Xt −X0 and independent
of FT .

We will need the following lemma:

Lemma 2.3 Suppose X1, . . . , Xn are independent exponential random vari-
ables with parameters a1, . . . , an, resp.
(1) Then min(X1, . . . , Xn) is an exponential random variable with parameter
a1 + · · ·+ an.
(2) The probability that Xi is the smallest of the n exponentials is

ai
a1 + · · ·+ an

.

Proof. (1) Write

P(min(X1, . . . , Xn) > t) = P(X1 > t, . . . , Xn > t) = P(X1 > t) · · ·P(Xn > t)

= e−a1t · · · e−ant = e−(a1+···+an)t.

(2) Without loss of generality we may suppose i = 1. Let’s first do the
case n = 2. The joint density of (X1, X2) is a1e

−a1xa2e
−a2y and we want to

integrate this over x < y. Doing the integration yields a1/(a1 + a2). For the
general case of n > 2, apply the above to X1 and min(X2, . . . , Xn).

If P1, . . . , Pn are independent Poisson processes with parameters λ1, . . . , λn
resp., let Xt =

∑n
i=1 biPi(t). By the above lemma, the times between jumps
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of X are independent exponentials with parameter λ1 + · · · + λn. At each
jump, X jumps bi with probability λi/(λ1 + · · ·+ λn).

Thus another way to construct X is to let U1, U2, . . . be independent ex-
ponentials with parameter λ1 + . . . + λn and let Y1, Y2, . . . be a sequence
of i.i.d. random variables independent of the Ui’s such that P(Yk = bj) =
λj/(λ1 + . . . + λn). We then let X0 be 0, let Xt be piecewise constant, and
at time

∑m
i=1 Ui we let X jump by the amount Ym.

2.2 Construction of Lévy processes

A process X has bounded jumps if there exists a real number K > 0 such
that supt |∆Xt| ≤ K, a.s.

Lemma 2.4 If Xt is a Lévy process with bounded jumps and with X0 = 0,
then Xt has moments of all orders, that is, E |Xt|p < ∞ for all positive
integers p.

Proof. Suppose the jumps of Xt are bounded in absolute value by K.
Since Xt is right continuous with left limits, there exists M > K such that
P(sups≤t |Xs| ≥M) ≤ 1/2.

Let T1 = inf{t : |Xt| ≥M} and Ti+1 = inf{t > Ti : |Xt −XTi | > M}. For
s < T1, |Xs| ≤ M , and then |XT1| ≤ |XT1−| + |∆XT1| ≤ M + K ≤ 2M . We
have

P(Ti+1 < t) ≤ P(Ti < t, Ti+1 − Ti < t)

= P(Ti+1 − Ti < t)P(Ti < t)

= P(T1 < t)P(Ti < t),

using Lemma 2.2. Now

P(T1 < t) ≤ P(sup
s≤t
|Xs| ≥M) ≤ 1

2
,

so P(Ti+1 < t) ≤ 1
2
P(Ti < t), and then by induction, P(Ti < t) ≤ 2−i.

Therefore
P(sup

s≤t
|Xs| ≥ 2(i+ 1)M) ≤ P(Ti < t) ≤ 2−i
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and the lemma now follows immediately.

A key lemma is the following.

Lemma 2.5 Suppose I is a finite interval of the form (a, b), [a, b), (a, b], or
[a, b] with a > 0 and m is a finite measure on R giving no mass to Ic. Then
there exists a Lévy process Xt satisfying (2.3)

Proof. First let us consider the case where I = [a, b). We approximate m
be a discrete measure. If n ≥ 1, let zj = a + j(b − a)/2n, j = 0, . . . , 2n − 1,
and let

mn(dx) =
2n−1∑
j=0

m([zj, zj+1))δzj(dx),

where δzj is point mass at zj. The measures mn converge weakly to m as
n→∞ in the sense that∫

f(x)mn(dx)→
∫
f(x) dx

whenever f is a bounded continuous function on R.

We let U1, U2, . . . be independent exponential random variables with pa-
rameter m(I). Let Y1, Y2, . . . be i.i.d. random variables independent of the
Ui’s with P(Yi ∈ dx) = m(dx)/m(I). We let Xt start at 0 and be piecewise
constant with jumps of size Ym at times

∑m
i=1 Ui.

If we define Xn
t is the exact same way, except that we replace m by mn

and we let Y n
i = zj if Yi ∈ [zj, zj+1), then we know from the previous section

that Xn
t is a Lévy process with Lévy measure mn. Moreover each Y n

i differs
from Yi by at most (b− a)2−n, so

sup
s≤t
|Xn

s −Xs| ≤ (b− a)2nN,

where N is the number of jumps of these processes before time t. N is a
Poisson random variable with parameter m(I), so has moments of all orders.
It follows that Xn

t converges uniformly to Xt almost surely on each finite
interval, and the difference goes to 0 in Lp for each p.
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We conclude that the law of Xt − Xs is independent of Fs and has the
same law as that of Xt−s because these hold for each Xn.

Since x→ eiux is a bounded continuous function and mn converges weakly
to m, starting with

E exp(iuXn
t ) = exp

(
t

∫
[eiux − 1]mn(dx)

)
,

and passing to the limit, we obtain that the characteristic function of X
under P is given by (2.3).

If now the interval I contains the point b, we follow the above proof, ex-
cept we let P 2n−1

t be a Poisson random variable with parameter m([zn−1, b]).
Similarly, if I does not contain the point a, we change P 0

t to be a Poisson
random variable with parameter m((a, z1)). With these changes, the proof
works for intervals I, whether or not they contain either of their endpoints.

Remark 2.6 If X is the Lévy process constructed in Lemma 2.5, then Yt =
Xt − EXt will be a Lévy process satisfying (2.4).

Here is the main theorem of this section.

Theorem 2.7 Suppose m is a measure on R with m({0}) = 0 and∫
(1 ∧ x2)m(dx) <∞.

Suppose b ∈ R and σ ≥ 0. There exists a Lévy process Xt such that

E eiuXt = exp
(
t
{
iub− σ2u2/2 +

∫
R
[eiux − 1− iux1(|x|≤1)]m(dx)

})
. (2.5)

The above equation is called the Lévy-Khintchine formula. The measure
m is called the Lévy measure. If we let

m(dx) =
1 + x2

x2
m′(dx)
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and

b = b′ +

∫
(|x|≤1)

x3

1 + x2
m(dx)−

∫
(|x|>1)

x

1 + x2
m(dx),

then we can also write

E eiuXt = exp
(
t
{
iub′ − σ2u2/2 +

∫
R

[
eiux − 1− iux

1 + x2

]1 + x2

x2
m′(dx)

})
.

Both expressions for the Lévy-Khintchine formula are in common use.

Proof. Let m(dx) be a measure supported on (0, 1] with
∫
x2m(dx) <

∞. Let mn(dx) be the measure m restricted to (2−n, 2−n+1]. Let Y n
t be

independent Lévy processes whose characteristic functions are given by (2.4)
with m replaced by mn; see Remark 2.6. Note EY n

t = 0 for all n by Remark
2.1. By the independence of the Y n’s, if M < N ,

E
( N∑
n=M

Y n
t

)2

=
N∑

n=M

E (Y n
t )2 =

N∑
n=M

t

∫
x2mn(dx) = t

∫ 2−M

2−N
x2m(dx).

By our assumption on m, this goes to 0 as M,N → ∞, and we conclude
that

∑N
n=0 Y

n
t converges in L2 for each t. Call the limit Yt. It is routine

to check that Yt has independent and stationary increments. Each Y n
t has

independent increments and is mean 0, so

E [Y n
t − Y n

s | Fs] = E [Y n
t − Y n

s ] = 0,

or Y n is a martingale. By Doob’s inequalities and the L2 convergence,

E sup
s≤t

∣∣∣ N∑
n=M

Y n
s

∣∣∣2 → 0

as M,N →∞, and hence there exists a subsequence Mk such that
∑Mk

n=1 Y
n
s

converges uniformly over s ≤ t, a.s. Therefore the limit Yt will have paths
that are right continuous with left limits.

If m is a measure supported in (1,∞) with m(R) < ∞, we do a similar
procedure starting with Lévy processes whose characteristic functions are of
the form (2.3). We let mn(dx) be the restriction of m to (2n, 2n+1], let Xn

t be
independent Lévy processes corresponding to mn, and form Xt =

∑∞
n=0X

n
t .
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Since m(R) < ∞, for each t0, the number of times t less than t0 at which
any one of the Xn

t jumps is finite. This shows Xt has paths that are right
continuous with left limits, and it is easy to then see that Xt is a Lévy process.

Finally, suppose
∫
x2 ∧ 1m(dx) <∞. Let X1

t , X2
t be Lévy processes with

characteristic functions given by (2.3) with m replaced by the restriction
of m to (1,∞) and (−∞,−1), resp., let X3

t , X4
t be Lévy processes with

characteristic functions given by (2.4) with m replaced by the restriction of
m to (0, 1] and [−1, 0), resp., let X5

t = bt, and let X6
t be σ times a Brownian

motion. Suppose the X i’s are all independent. Then their sum will be a
Lévy process whose characteristic function is given by (2.5).

A key step in the construction was the centering of the Poisson processes
to get Lévy processes with characteristic functions given by (2.4). Without
the centering one is forced to work only with characteristic functions given
by (2.3).

2.3 Representation of Lévy processes

We now work towards showing that every Lévy process has a characteristic
function of the form given by (2.5).

Lemma 2.8 If Xt is a Lévy process and A is a Borel subset of R that is a
positive distance from 0, then

Nt(A) =
∑
s≤t

1A(∆Xs)

is a Poisson process.

Saying that A is a positive distance from 0 means that inf{|x| : x ∈ A} > 0.

Proof. Since Xt has paths that are right continuous with left limits and A is
a positive distance from 0, then there can only be finitely many jumps of X
that lie in A in any finite time interval, and so Nt(A) is finite and has paths
that are right continuous with left limits. It follows from the fact that Xt

has stationary and independent increments that Nt(A) also has stationary
and independent increments. We now apply Proposition 1.10.
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Our main result is that Nt(A) and Nt(B) are independent if A and B are
disjoint.

Theorem 2.9 Let {Ft} be a filtration satisfying the usual conditions. Sup-
pose that Nt(A) is a Poisson point process with respect to the measure λ. If
A1, . . . , An are pairwise disjoint measurable subsets of R with ENt(Ak) <∞
for k = 1, . . . , n, then the processes Nt(A1), . . . , Nt(An) are mutually inde-
pendent.

Proof. Define λ(A) = EN1(A). The previous lemma shows that if λ(A) <
∞, then Nt(A) is a Poisson process, and clearly its parameter is λ(A). We
first make the observation that because A1, A2, . . . , An are disjoint, then no
two of the Nt(Ak) have jumps at the same time.

To prove the theorem, it suffices to let 0 = r0 < r1 < · · · < rm and show
that the random variables

{Nrj(Ak)−Nrj−1
(Ak) : 1 ≤ j ≤ m, 1 ≤ k ≤ n}

are independent. Since for each j and each k, Nrj(Ak) − Nrj−1
(Ak) is in-

dependent of Frj−1
, it suffices to show that for each j ≤ m, the random

variables
{Nrj(Ak)−Nrj−1

(Ak) : 1 ≤ k ≤ n}

are independent. We will do the case j = m = 1 and write r for rj for
simplicity; the case when j,m > 1 differs only in notation.

We will prove this using induction. We start with the case n = 2 and show
the independence of Nr(A1) and Nr(A2). Each Nt(Ak) is a Poisson process,
and so Nt(Ak) has moments of all orders. Let u1, u2 ∈ R and set

φk = λ(Ak)(e
iuk − 1), k = 1, 2.

Let
Mk

t = eiukNt(Ak)−tφk .

We see that Mk
t is a martingale because E eiukNt(Ak) = etφk , and therefore

E [Mk
t | Fs] = Mk

s E [eiu(Nt(Ak)−Ns(Ak)))−(t−s)φk | Fs]
= Mk

s e
−(t−s)φkE [eiu(Nt(Ak)−Ns(Ak))] = Mk

s ,
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using the independence and stationarity of the increments of a Poisson pro-
cess.

Now we can write

E [M1
tM

2
t ] = E [M1

t ] + E
∫ t

0

M1
t dM

2
s

= 1 + E
∫ t

0

M1
s dM

2
s ,

using that M2
0 = 1, M1 is a martingale, and Proposition 1.17. (Here M2 is

the difference of two increasing processes; the adjustments needed are easy.)

Since we have argued that no two of the Nt(Ak) jump at the same time,
the same is true for the Mk

t and so the above is equal to

1 + E
∫ t

0

M1
s− dM

2
s .

It therefore remains to prove that the above integral is equal to 0.

If Hs is a process of the form

Hs(ω) = K(ω)1(a,b](s)

where K is Fa measurable, then∫ t

0

Hs dM
2
s = K(M2

t∧b −M2
t∧a),

and conditioning on Fa, the expectation is zero:

E [K(M2
t∧b −M2

t∧a)] = E [KE [M2
t∧b −M2

t∧a | Fa] ] = 0,

using that M2 is a martingale. We are doing Lebesgue-Stieltjes integrals
here, but the argument is similar to one used with stochastic integrals. The
expectation is also 0 for linear combinations of such H’s. Since M1

s− is left
continuous, we can approximate it by such H’s, and therefore the integral is
0 as required.

We thus have
EM1

rM
2
r = 1.
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This implies

E
[
ei(u1Nr(A1)+u2Nr(A2))

]
= erφ1erφ2 = E

[
eiu1Nr(A1)

]
E
[
eiu2Nr(A2)

]
.

Since this holds for all u1, u2, then Nr(A1) and Nr(A2) are independent. We
conclude that the processes Nt(A1) and Nt(A2) are independent.

To handle the case n = 3, we first show that M1
tM

2
t is a martingale. We

write

E [M1
tM

2
t | Fs]

= M1
sM

2
s e
−(t−s)(φ1+φ2)E [ei(u1(Nt(A1)−Ns(A1))+u2(Nt(A2)−Ns(A2))) | Fs]

= M1
sM

2
s e
−(t−s)(φ1+φ2)E [ei(u1(Nt(A1)−Ns(A1))+u2(Nt(A2)−Ns(A2)))]

= M1
sM

2
s ,

using the fact that Nt(A1) and Nt(A2) are independent of each other and
each have stationary and independent increments.

Note that M3
t = eiu3Nt(A3)−tφ3 has no jumps in common with M1

t or M2
t .

Therefore if M
3

t = M3
t∧r, then

E [M
3

∞(M
1

∞M
2

∞)] = 0,

and as before this leads to

E [M3
r (M1

rM
2
r )] = 1.

As above this implies that Nr(A1), Nr(A2), and Nr(A3) are independent. To
prove the general induction step is similar.

We will also need the following corollary.

Corollary 2.10 Let Ft and Nt(Ak) be as in Theorem 4.2. Suppose Yt is a
process with paths that are right continuous with left limits such that Yt − Ys
is independent of Fs whenever s < t and Yt−Ys has the same law as Yt−s for
each s < t. Suppose moreover that Y has no jumps in common with any of
the Nt(Ak). Then the processes Nt(A1), . . . , Nt(An), and Yt are independent.
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Proof. The law of Y0 is the same as that of Yt − Yt, so Y0 = 0, a.s. By the
fact that Y has stationary and independent increments,

E eiuYs+t = E eiuYsE eiu(Ys+t−Ys) = E eiuYsE eiuYt ,

which implies that the characteristic function of Y is of the form E eiuYt =
etψ(u) for some function ψ(u).

We fix u ∈ R and define

MY
t = eiuYt−tψ(u).

As in the proof of Theorem 4.2, we see that MY
t is a martingale. Since MY

has no jumps in common with any of the Mk
t , if M

Y

t = MY
t∧r, we see as above

that

E [M
Y

∞(M
1

∞ · · ·M
n

∞)] = 1,

or

E [MY
r M

1
r · · ·Mn

r ] = 1.

This leads as above to the independence of Y from all the Nt(Ak)’s.

Here is the representation theorem for Lévy processes.

Theorem 2.11 Suppose Xt is a Lévy process with X0 = 0. Then there exists
a measure m on R− {0} with∫

(1 ∧ x2)m(dx) <∞

and real numbers b and σ such that the characteristic function of Xt is given
by (2.5).

Proof. Define m(A) = EN1(A) if A is a bounded Borel subset of (0,∞)
that is a positive distance from 0. Since N1(∪∞k=1Ak) =

∑∞
k=1 N1(Ak) if the

Ak are pairwise disjoint and each is a positive distance from 0, we see that
m is a measure on [a, b] for each 0 < a < b <∞, and m extends uniquely to
a measure on (0,∞).
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First we want to show that
∑

s≤t ∆Xs1(∆Xs>1) is a Lévy process with
characteristic function

exp
(
t

∫ ∞
1

[eiux − 1]m(dx)
)
.

Since the characteristic function of the sum of independent random variables
is equal to the product of the characteristic functions, it suffices to suppose
0 < a < b and to show that

E eiuZt = exp
(
t

∫
(a,b]

[eiux − 1]m(dx)
)
,

where
Zt =

∑
s≤t

∆Xs1(a,b](∆Xs).

Let n > 1 and zj = a+ j(b−a)/n. By Lemma 2.8, Nt((zj, zj+1]) is a Poisson
process with parameter

`j = EN1((zj−1, zj]) = m((zj, zj+1]).

Thus
∑n−1

j=0 zjNt((zj, zj+1]) has characteristic function

n−1∏
j=0

exp(t`j(e
iuzj − 1)) = exp

(
t
n−1∑
j=0

(eiuzj − 1)`j

)
,

which is equal to

exp
(
t

∫
(eiux − 1)mn(dx)

)
, (2.6)

where mn(dx) =
∑n−1

j=0 `jδzj(dx). Since Zn
t converges to Zt as n→∞, passing

to the limit shows that Zt has a characteristic function of the form (2.5).

Next we show that m(1,∞) <∞. (We write m(1,∞) instead of m((1,∞))
for esthetic reasons.) If not, m(1, K)→∞ as K →∞. Then for each fixed
L and each fixed t,

lim sup
K→∞

P(Nt(1, K) ≤ L) = lim sup
K→∞

L∑
j=0

e−tm(1,K)m(1, K)j

j!
= 0.

This implies that Nt(1,∞) = ∞ for each t. However, this contradicts the
fact that Xt has paths that are right continuous with left limits.
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We define m on (−∞, 0) similarly.

We now look at

Yt = Xt −
∑
s≤t

∆Xs1(|∆Xs|>1).

This is again a Lévy process, and we need to examine its structure. This
process has bounded jumps, hence has moments of all orders. By subtracting
c1t for an appropriate constant c1, we may suppose Yt has mean 0. Let
I1, I2, . . . be an ordering of the intervals {[2−(m+1), 2−m), (−2−m,−2−(m+1)] :
m ≥ 0}. Let

X̃k
t =

∑
s≤t

∆Xs1(∆Xs∈Ik)

and let Xk
t = X̃k

t − E X̃k
t . By the fact that all the Xk have mean 0 and are

independent,

∞∑
k=1

E (Xk
t )2 ≤ E

[(
Yt −

∞∑
k=1

Xk
t

)2]
+ E

[( ∞∑
k=1

Xk
t

)2]
= E (Yt)

2 <∞.

Hence

E
[ N∑
k=M

Xk
t

]2

=
N∑

k=M

E (Xk
t )2

tends to 0 as M,N → ∞, and thus Xt −
∑N

k=1X
k
t converges in L2. The

limit, Xc
t , say, will be a Lévy process independent of all the Xk

t . Moreover,
Xc has no jumps, i.e., it is continuous. Since all the Xk have mean 0, then
EXc

t = 0. By the independence of the increments,

E [Xc
t −Xc

s | Fs] = E [Xc
t −Xc

s ] = 0,

and we see Xc is a continuous martingale. Using the stationarity and inde-
pendence of the increments,

E [(Xc
s+t)

2] = E [(Xc
s)

2] + 2E [Xc
s(X

c
s+t −Xc

s)] + E [(Xc
s+t −Xc

s)
2]

= E [(Xc
s)

2] + E [(Xc
t )

2],
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which implies that there exists a constant c2 such that E (Xc
t )

2 = c2t. We
then have

E [(Xc
t )

2 − c2t | Fs] = (Xc
s)

2 − c2s+ E [(Xc
t −Xc

s)
2 | Fs]− c2(t− s)

= (Xc
s)

2 − c2s+ E [(Xc
t −Xc

s)
2]− c2(t− s)

= (Xc
s)

2 − c2s.

The quadratic variation process of Xc is therefore c2t, and by Lévy’s theorem,
Xc
t /
√
c2 is a constant multiple of Brownian motion.

To complete the proof, it remains to show that
∫ 1

−1
x2m(dx) <∞. But by

Remark 2.1, ∫
Ik

x2m(dx) = E (Xk
1 )2,

and we have seen that ∑
k

E (Xk
1 )2 ≤ EY 2

1 <∞.

Combining gives the finiteness of
∫ 1

−1
x2m(dx).

2.4 Symmetric stable processes

Let α ∈ (0, 2). If

m(dx) =
c

|x|1+α
dx,

we have what is called a symmetric stable process of index α. We see that∫
1 ∧ x2m(dx) is finite.

Because |x|−1−α is symmetric, in the Lévy-Khintchine formula we can take
iux 1(|x|<a) for any a instead of iux 1(|x|<1). Then∫ [

eiux − 1− iux 1(|x|<1)

] c

|x|1+α
dx =

∫ [
eiux − 1− iux 1(|x|<1/|u|)

] c

|x|1+α
dx

=

∫ [
eiy − 1− iy 1(|y|<1)

]
|u|1+α dy

|u|
= −c′|u|α.
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In the last line we have the negative sign because the imaginary part of
eiy − 1 − iy 1(|y|<1) is zero and the real part is negative since | cos y| ≤ 1.
Therefore is Xt is a symmetric stable process of index α,

E eiuXt = e−c
′t|u|α .

An exercise is to show that if a > 0 and Xt is a symmetric stable process
of index α, then Xat and a1/αXt have the same law.

By Exercise 6.7.4 of Chung’s book,

P(X1 > A) ∼ cA−α, A→∞, (2.7)

where f ∼ g means the ratio of the two sides goes to 0.

Since e−c
′t|u|α is integrable, Xt has a continuous density function pt(x).

We have

pt(0) =
1

2π

∫
e−c

′t|u|α du, (2.8)

and by a change of variables,

pt(0) = ct−1/α. (2.9)

If x 6= 0, then

pt(x) =
1

2π

∫
e−iuxe−c

′t|u|α du =
1

2π

∫
(cosux− i sinux)e−c

′t|u|α du.

Since sinux is an odd function of u, the imaginary term is 0. Since cosux ≤ 1
and in fact is strictly less than 1 except at countably many values of u, we
see that

pt(x) < pt(0). (2.10)

If β < 1, we can take m(dx) = c/|x|1+β for x > 0 and 0 for x < 0. We can
also take the Lévy-Khintchine exponent to be just [eiux − 1] if we take the
drift term to cancel out the

∫
iux 1(|x|<1) term. This reflects that here we do

not need to subtract the mean to get convergence of the compound Poisson
processes. In this case we get the one-sided stable processes of index β. The
paths of such a process only increase.

There is a notion of subordination which is very curious. Suppose that Tt
is a one-sided stable process of index β with β < 1. Let Wt be a Brownian
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motion independent of Tt. Then Yt = WTt is a symmetric stable process of
index 2β. Let’s see why that is so.

That Y is a Lévy process is not hard to see. We must therefore calculate
the Lévy measure m. If Pt is a Poisson process with parameter λ, then

E euPt =
∞∑
k=0

e−λt
(λt)k

k!
euk = e−λteuλt = eλt(e

u−1).

Using that the moment generating function of independent random variables
is the product of the moment generating functions and taking limits, we see
that

E e−uTt = e−cu
β

.

Then

E eiuYt = E
∫
eiuWsP(Tt ∈ ds)

=

∫
e−u

2s/2P(Tt ∈ ds)

= E e−u2Tt/2

= e−ct(u
2/2)β

= e−c
′|u|2β .
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Chapter 3

Stochastic calculus

In this chapter we investigate the stochastic calculus for processes which
may have jumps as well as a continuous component. If X is not a con-
tinuous process, it is no longer true that Xt∧TN is a bounded process when
TN = inf{t : |Xt| ≥ N}, since there could be a large jump at time TN . We in-
vestigate stochastic integrals with respect to square integrable (not necessar-
ily continuous) martingales, Itô’s formula, and the Girsanov transformation.
We prove the reduction theorem that allows us to look at semimartingales
that are not necessarily bounded.

We will need the Doob-Meyer decomposition, which can be found in Chap-
ter 16 of Bass, Stochastic Processes. That in turn depends on the debut and
section theorems. A simpler proof than the standard one for the debut and
section theorems can be found in the Arxiv:

http://arxiv.org/abs/1001.3619.

3.1 Decomposition of martingales

We assume throughout this chapter that {Ft} is a filtration satisfying the
usual conditions. This means that each Ft contains every P-null set and
∩ε>0Ft+ε = Ft for each t.

Let us with a few definitions and facts. The predictable σ-field is the σ-field
of subsets of [0,∞)×Ω generated by the collection of bounded, left continuous
processes that are adapted to {Ft}. A stopping time T is predictable and

35
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predicted by the sequence of stopping times Tn if Tn ↑ T , and Tn < T on
the event (T > 0). A stopping time T is totally inaccessible if P(T = S) = 0
for every predictable stopping time S. The graph of a stopping time T is
[T, T ] = {(t, ω) : t = T (ω) < ∞}. If Xt is a process that is right continuous
with left limits, we set Xt− = lims→t,s<tXs and ∆Xt = Xt−Xt−. Thus ∆Xt

is the size of the jump of Xt at time t.

Let’s look at some examples. If Wt is a Brownian motion and T = inf{t :
Wt = 1}, then Tn = inf{t : Wt = 1− (1/n)} are stopping times that predict
T .

On the other hand, if Pt is a Poisson process (with parameter 1, say, for
convenience), then we claim that T = inf{t : Pt = 1} is totally inaccessible.
To show this, suppose S is a stopping time and Sn ↑ S are stopping times
such that Sn < S on (S > 0). We will show that P(S = T ) = 0. To do that,
it suffices to show that P(S ∧N = T ) = 0 for each positive integer N . Since
Pt − t is a martingale, EPSn∧N = E (Sn ∧ N). Letting n → ∞, we obtain
(by monotone convergence) that EP(S∧N)− = E (S ∧N). We also know that
EPS∧N = E (S ∧N). Therefore EP(S∧N)− = EPS∧N . Since P has increasing
paths, this implies that P(S∧N)− = PS∧N , and we conclude P(S∧N = T ) = 0.

In this chapter we will assume througout for simplicity that every jump
time of whichever process we are considering is totally inaccessible. The
general case is not much harder, but the differences are only technical.

A supermartingale Z is of class D if the family of random variables:

{ZT : T a finite stopping time}

is uniformly integrable.

Theorem 3.1 (Doob-Meyer decomposition) Let {Ft} be a filtration satisfy-
ing the usual conditions and let Z be a supermartingale of class D whose paths
are right continuous with left limits. Then Z can be written Zt = Mt − At
in one and only one way, where M and A are adapted processes whose paths
are right continuous with left limits, A has continuous increasing paths and
A∞ = limt→∞At is integrable, and M is a uniformly integrable martingale

Suppose At is a bounded increasing process whose paths are right contin-
uous with left limits. Recall that a function f is increasing if s < t implies
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f(s) ≤ f(t). Then trivially At is a submartingale, and by the Doob-Meyer de-

composition, there exists a continuous increasing process Ãt such that At−Ãt
is a martingale. We call Ãt the compensator of At.

If At = Bt − Ct is the difference of two increasing processes Bt and Ct,
then we can use linearity to define Ãt as B̃t − C̃t. We can even extend the
notion of compensator to the case where At is complex valued and has paths
that are locally of bounded variation by looking at the real and imaginary
parts.

We will use the following lemma. For any increasing process A we let
A∞ = limt→∞At.

Lemma 3.2 Suppose At has increasing paths that are right continuous with
left limits, At ≤ K a.s. for each t, and let Bt be its compensator. Then
EB2

∞ ≤ 2K2.

Proof. If Mt = At −Bt, then Mt is a martingale, and then

E [M∞ −Mt | Ft] = 0.

We then write

EB2
∞ = 2E

∫ ∞
0

(B∞ −Bt) dBt = 2E
∫ ∞

0

E [B∞ −Bt | Ft] dBt

= 2E
∫ ∞

0

E [A∞ − At | Ft] dBt ≤ 2KE
∫ ∞

0

dBt

= 2KEB∞ = 2KEA∞ ≤ 2K2.

From the lemma we get the following corollary.

Corollary 3.3 If At = Bt−Ct, where Bt and Ct are increasing right contin-
uous processes with B0 = C0 = 0, a.s., and in addition B and C are bounded,
then

E sup
t≥0

Ã2
t <∞.
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Proof. By a proposition, E B̃2
∞ <∞ and E C̃2

∞ <∞, and so

E sup
t≥0

Ã2
t ≤ E [2 sup

t≥0
B̃2
t + 2 sup

t≥0
C̃2
t ] ≤ 2E B̃2

∞ + 2E C̃2
∞ <∞.

We are done.

A key result is the following orthogonality lemma.

Lemma 3.4 Suppose At is a bounded increasing right continuous process
with A0 = 0, a.s., Ãt is the compensator of A, and Mt = At−Ãt. Suppose Nt

is a right continuous square integrable martingale such that (∆Nt)(∆Mt) = 0
for all t. Then EM∞N∞ = 0.

Proof. By Lemma 3.3, M is square integrable. Suppose

H(s, ω) = K(ω)1(a,b](s)

with K being Fa measurable. Since Mt is of bounded variation, we have (this
is a Lebesgue-Stieltjes integral here)

E
∫ ∞

0

Hs dMs = E [K(Mb −Ma)] = E [KE [Mb −Ma | Fa] ] = 0.

We see that linear combinations of such H’s generate the predictable σ-field.
Thus by linearity and taking limits, E

∫∞
0
Hs dMs = 0 if Hs is a predictable

process such that E
∫∞

0
|Hs| |dMs| < ∞. In particular, since Ns− is left

continuous and hence predictable, E
∫∞

0
Ns− dMs = 0, provided we check

integrability:

E
∣∣∣ ∫ ∞

0

|Ns−| |dMs|
∣∣∣ ≤ E

∫ ∞
0

(sup
r
|Nr|) |dMs|

= E [(sup
r
|Nr|) (A∞ + Ã∞)] <∞

by the Cauchy-Schwarz inequality.

By hypothesis, E
∫∞

0
∆Ns dMs = 0, so E

∫∞
0
Ns dMs = 0. On the other

hand, using Proposition 1.17, we see

EM∞N∞ = E
∫ ∞

0

N∞ dMs = E
∫ ∞

0

Ns dMs = 0.
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The proof is complete.

If we apply the above to Nt∧T , we have EM∞NT = 0. If we then condition
on FT ,

E [MTNT ] = E [NTE [M∞ | FT ] ] = E [NTM∞] = 0. (3.1)

The reason for the name “orthogonality lemma” is that by (3.1), MtNt is
a martingale. This implies that 〈M,N〉t (which we will define soon, and is
defined similarly to the case of continuous martingales) is identically equal
to 0.

Let Mt be a square integrable martingale with paths that are right con-
tinuous and left limits, so that EM2

∞ <∞. For each i ∈ Z, let Ti1 = inf{t :
|∆Mt| ∈ [2i, 2i+1)}, Ti2 = inf{t > Ti1 : |∆Mt| ∈ [2i, 2i+1)}, and so on; i can
be both positive and negative. Since Mt is right continuous with left limits,
for each i, Tij →∞ as j →∞. We conclude that Mt has at most countably
many jumps. We relabel the jump times as S1, S2, . . . so that each Sk is
totally inaccessible, the graphs of the Sk are disjoint, M has a jump at each
time Sk and only at these times, and |∆MSk | is bounded for each k. We do
not assume that Sk1 ≤ Sk2 if k1 ≤ k2, and in general it would not be possible
to arrange this.

If Si is a totally inaccessible stopping time, let

Ai(t) = ∆MSi1(t≥Si) (3.2)

and
Mi(t) = Ai(t)− Ãi(t), (3.3)

where Ãi is the compensator of Ai. Ai(t) is the process that is 0 up to time
Si and then jumps an amount ∆MSi ; thereafter it is constant. We know that

Ã is continuous. Note that M −Mi has no jump at time Si.

Theorem 3.5 Suppose M is a square integrable martingale and we define
Mi as in (3.3).

(1) Each Mi is square integrable.

(2)
∑∞

i=1 Mi(∞) converges in L2.

(3) If M c
t = Mt −

∑∞
i=1Mi(t), then M c is square integrable and we can

find a version that has continuous paths.
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(4) For each i and each stopping time T , E [M c
TMi(T )] = 0.

Proof. (1) If Si is a totally inaccessible stopping time and we let Bt =
(∆MSi)

+1(t≥Si) and Ct = (∆MSi)
−1(t≥Si), then (1) follows by Corollary 3.3.

(2) Let Vn(t) =
∑n

i=1Mi(t). By the orthogonality lemma (Lemma 3.4),
E [Mi(∞)Mj(∞)] = 0 if i 6= j and E [Mi(∞)(M∞ − Vn(∞)] = 0 if i ≤ n. We
thus have

n∑
i=1

EMi(∞)2 = EVn(∞)2

≤ E
[
M∞ − Vn(∞)

]2

+ EVn(∞)2

= E
[
M∞ − Vn(∞) + Vn(∞)

]2

= EM2
∞ <∞.

Therefore the series E
∑n

i=1Mi(∞)2 converges. If n > m,

E [(Vn(∞)− Vm(∞)]2 = E
[ n∑
i=m+1

Mi(∞)
]2

=
n∑

i=m+1

EMi(∞)2.

This tends to 0 as n,m → ∞, so Vn(∞) is a Cauchy sequence in L2, and
hence converges.

(3) From (2), Doob’s inequalities, and the completeness of L2, the ran-
dom variables supt≥0[Mt − Vn(t)] converge in L2 as n → ∞. Let M c

t =
limn→∞[Mt − Vn(t)]. There is a sequence nk such that

sup
t≥0
|(Mt − Vnk(t))−M c

t | → 0, a.s.

We conclude that the paths of M c
t are right continuous with left limits. By

the construction of the Mi, M − Vnk has jumps only at times Si for i > nk.
We therefore see that M c has no jumps, i.e., it is continuous.

(4) By the orthogonality lemma and (3.1),

E [Mi(T )(MT − Vn(T )] = 0

if T is a stopping time and i ≤ n. Letting n tend to infinity proves (4).
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3.2 Stochastic integrals

If Mt is a square integrable martingale, then M2
t is a submartingale by

Jensen’s inequality for conditional expectations. Just as in the case of con-
tinuous martingales, we can use the Doob-Meyer decomposition to find a pre-
dictable increasing process starting at 0, denoted 〈M〉t, such that M2

t −〈M〉t
is a martingale.

Let us define
[M ]t = 〈M c〉t +

∑
s≤t

|∆Ms|2. (3.4)

Here M c is the continuous part of the martingale M as defined in Theorem
3.5. As an example, if Mt = Pt − t, where Pt is a Poisson process with
parameter 1, then M c

t = 0 and

[M ]t =
∑
s≤t

∆P 2
s =

∑
s≤t

∆Ps = Pt,

because all the jumps of Pt are of size one. In this case 〈M〉t = t; this follows
from Proposition 3.6 below.

In defining stochastic integrals, one could work with 〈M〉t, but the process
[M ]t is the one that shows up naturally in many formulas, such as the product
formula.

Proposition 3.6 M2
t − [M ]t is a martingale.

Proof. By the orthogonality lemma and (3.1) it is easy to see that

〈M〉t = 〈M c〉t +
∑
i

〈Mi〉t.

Since M2
t − 〈M〉t is a martingale, we need only show [M ]t − 〈M〉t is a mar-

tingale. Since

[M ]t − 〈M〉t =
(
〈M c〉t +

∑
s≤t

|∆Ms|2
)
−
(
〈M c〉t +

∑
i

〈Mi〉t
)
,

it suffices to show that
∑

i 〈Mi〉t −
∑

i

∑
s≤t |∆Mi(s)|2 is a martingale.
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By an exercise

Mi(t)
2 = 2

∫ t

0

Mi(s−) dMi(s) +
∑
s≤t

|∆Mi(s)|2, (3.5)

where the first term on the right hand side is a Lebesgue-Stieltjes integral. If
we approximate this integral by a Riemann sum and use the fact that Mi is
a martingale, we see that the first term on the right in (3.5) is a martingale.
Thus M2

i (t) −
∑

s≤t |∆Mi(s)|2 is a martingale. Since M2
i (t) − 〈Mi〉t is a

martingale, summing over i completes the proof.

If Hs is of the form

Hs(ω) =
n∑
i=1

Ki(ω)1(ai,bi](s), (3.6)

where each Ki is bounded and Fai measurable, define the stochastic integral
by

Nt =

∫ t

0

Hs dMs =
n∑
i=1

Ki[Mbi∧t −Mai∧t].

Very similar proofs to those in the Brownian motion case (see Chapter 10 of
Bass, Stochastic Processes), show that the left hand side will be a martingale
and (with [·] instead of 〈·〉), N2

t − [N ]t is a martingale.

If H is P-measurable and E
∫∞

0
H2
s d[M ]s < ∞, approximate H by inte-

grands Hn
s of the form (3.6) so that

E
∫ ∞

0

(Hs −Hn
s )2 d[M ]s → 0

and define Nn
t as the stochastic integral of Hn with respect to Mt. By

almost the same proof as that of the construction of stochastic integrals with
respect to Brownian motion, the martingales Nn

t converge in L2. We call
the limit Nt =

∫ t
0
Hs dMs the stochastic integral of H with respect to M . A

subsequence of the Nn converges uniformly over t ≥ 0, a.s., and therefore
the limit has paths that are right continuous with left limits. The same
arguments as those for Brownian motion apply to prove that the stochastic
integral is a martingale and

[N ]t =

∫ t

0

H2
s d[M ]s.
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A consequence of this last equation is that

E
(∫ t

0

Hs dMs

)2

= E
∫ t

0

H2
s d[M ]s. (3.7)

3.3 Itô’s formula

We will first prove Itô’s formula for a special case, namely, we suppose Xt =
Mt + At, where Mt is a square integrable martingale and At is a process
of bounded variation whose total variation is integrable. The extension to
semimartingales without the integrability conditions will be done later in the
chapter (in Section 3.5) and is easy. Define 〈Xc〉t to be 〈M c〉t.

Theorem 3.7 Suppose Xt = Mt +At, where Mt is a square integrable mar-
tingale and At is a process with paths of bounded variation whose total vari-
ation is integrable. Suppose f is C2

b on R. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−) dXs + 1
2

∫ t

0

f ′′(Xs−) d〈Xc〉s (3.8)

+
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

Proof. The proof will be given in several steps. Set

S(t) =

∫ t

0

f ′(Xs−) dXs, Q(t) = 1
2

∫ t

0

f ′′(Xs−) d〈Xc〉s,

and

J(t) =
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

We use these letters as mnemonics for “stochastic integral term,” “quadratic
variation term,” and “jump term,” resp.

Step 1: Suppose Xt has a single jump at time T which is a totally inac-
cessible stopping time and there exists N > 0 such that |∆MT |+ |∆AT | ≤ N
a.s.
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Let Ct = ∆MT1(t≥T ) and let C̃t be the compensator. If we replace Mt by

Mt−Ct + C̃t and At by At +Ct− Ĉt, we may assume that Mt is continuous.

Let Bt = ∆XT1(t≥T ). Set X̂t = Xt − Bt and Ât = At − Bt. Then

X̂t = Mt + Ât and X̂t is a continuous process that agrees with Xt up to but
not including time T . We have X̂s− = X̂s and ∆X̂s = 0 if s ≤ T . By Ito’s
formula for continuous processes,

f(X̂t) = f(X̂0) +

∫ t

0

f ′(X̂s) dX̂s + 1
2

∫ t

0

f ′′(X̂s) d〈M〉s

= f(X̂0) +

∫ t

0

f ′(X̂s−) dX̂s + 1
2

∫ t

0

f ′′(X̂s−) d〈X̃c〉s

+
∑
s≤t

[f(X̂s)− f(X̂s−)− f ′(X̂s−)∆X̂s],

since the sum on the last line is zero. For t < T , X̂t agrees with Xt. At time
T , f(Xt) has a jump of size f(XT ) − f(XT−). The integral with respect to

X̂, S(t), will jump f ′(XT−)∆XT , Q(t) does not jump at all, and J(t) jumps
f(XT ) − f(XT−) − f ′(XT−)∆XT . Therefore both sides of (3.8) jump the
same amount at time T , and hence in this case we have (3.8) holding for
t ≤ T .

Step 2: Suppose there exist times T1 < T2 < · · · with Tn → ∞, each Ti
is a totally inaccessible stopping time stopping time, for each i, there exists
Ni > 0 such that |∆MTi | and |∆ATi | are bounded by Ni, and Xt is continuous
except at the times T1, T2, . . .. Let T0 = 0.

Fix i for the moment. Define X ′t = X(t−Ti)+ , define A′t and M ′
t similarly,

and apply Step 1 to X ′ at time Ti + t. We have for Ti ≤ t ≤ Ti+1

f(Xt) = f(XTi) +

∫ t

Ti

f ′(Xs−) dXs + 1
2

∫ t

Ti

f ′′(Xs−) d〈Xc〉s

+
∑
Ti<s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

Thus for any t we have

f(XTi+1∧t) = f(XTi∧t) +

∫ Ti+1∧t

Ti∧t
f ′(Xs−) dXs + 1

2

∫ Ti+1∧t

Ti∧t
f ′′(Xs−) d〈Xc〉s

+
∑

Ti∧t<s≤Ti+1∧t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].
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Summing over i, we have (3.8) for each t.

Step 3: We now do the general case. As in the paragraphs preceding
Theorem 3.5, we can find stopping times S1, S2, . . . such that each jump of
X occurs at one of the times Si and so that for each i, there exists Ni > 0
such that |∆MSi | + |∆ASi | ≤ Ni. Moreover each Si is a totally inaccessible
stopping time. Let M be decomposed into M c and Mi as in Theorem 3.5
and let

Act = At −
∞∑
i=1

∆ASi1(t≥Si).

Since At is of bounded variation, then Ac will be finite and continuous. Define

Mn
t = M c

t +
n∑
i=1

Mi(t)

and

Ant = Act +
n∑
i=1

∆ASi1(t≥Si),

and let Xn
t = Mn

t + Ant . We already know that Mn converges uniformly
over t ≥ 0 to M in L2. If we let Bn

t =
∑n

i=1(∆ASi)
+1(t≥Si) and Cn

t =∑n
i=1(∆ASi)

−1(t≥Si) and let Bt = supnB
n
t , Ct = supnC

n
t , then the fact that

A has paths of bounded variation implies that with probability one, Bn
t → Bt

and Cn
t → Ct uniformly over t ≥ 0 and At = Bt −Ct. In particular, we have

convergence in total variation norm:

E
∫ ∞

0

|d(Ant )− At)| → 0.

We define Sn(t), Qn(t), and Jn(t) analogously to S(t), Q(t), and J(t),
resp. By applying Step 2 to Xn, we have

f(Xn
t ) = f(Xn

0 ) + Sn(t) +Qn(t) + Jn(t),

and we need to show convergence of each term. We now examine the various
terms.

Uniformly in t, Xn
t converges to Xt in probability, that is,

P(sup
t≥0
|Xn

t −Xt| > ε)→ 0
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as n→∞ for each ε > 0. Since
∫ t

0
d〈M c〉s <∞, by dominated convergence∫ t

0

f ′′(Xn
s−) d〈M c〉s →

∫ t

0

f ′′(Xs−) d〈M c〉s

in probability. Therefore Qn(t)→ Q(t) in probability. Also, f(Xn
t )→ f(Xt)

and f(X0)→ f(X0), both in probability.

We now show Sn(t)→ S(t). Write∫ t

0

f ′(Xn
s−) dAns −

∫ t

0

f ′(Xs−) dAs

=
[ ∫ t

0

f ′(Xn
s−) dAns −

∫ t

0

f ′(Xn
s−) dAs

]
+
[ ∫ t

0

f ′(Xn
s−) dAs −

∫ t

0

f ′(Xs−) dAs

]
= In1 + In2 .

We see that

|In1 | ≤ ‖f ′‖∞
∫ t

0

|dAns − dAs| → 0

as n→∞, while by dominated convergence, |In2 | also tends to 0.

We next look at the stochastic integral part of Sn(t).∫ t

0

f ′(Xn
s−) dMn

s −
∫ t

0

f ′(Xs−) dMs

=
[ ∫ t

0

f ′(Xn
s−) dMn

s −
∫ t

0

f ′(Xs−) dMn
s

]
+
[ ∫ t

0

f ′(Xs−) dMn
s −

∫ t

0

f ′(Xs−) dMs

]
= In3 + In4 .

The L2 norm of In3 is bounded by

E
∫ t

0

|f ′(Xn
s−)− f ′(Xs−)|2 d[Mn]s ≤ E

∫ t

0

|f ′(Xn
s−)− f ′(Xs−)|2 d[M ]s,

which goes to 0 by dominated convergence. Also

In4 =

∫ t

0

f ′(Xs−)
∞∑

i=n+1

dMi(s),
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so using the orthogonality lemma (Lemma 3.4), the L2 norm of In4 is less
than

‖f ′‖2
∞

∞∑
i=n+1

E [Mi]∞ ≤ ‖f ′‖2
∞

∞∑
i=n+1

EMi(∞)2,

which goes to 0 as n→∞.

Finally, we look at the convergence of Jn. The idea here is to break
both J(t) and Jn(t) into two parts, the jumps that might be relatively large
(jumps at times Si for i ≤ N where N will be chosen appropriately) and the
remaining jumps. Let N > 1 be chosen later.

J(t)− Jn(t) =
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs]

−
∑
s≤t

[f(Xn
s )− f(Xn

s−)− f ′(Xn
s−)∆Xn

s ]

=
∑
{i:Si≤t}

[f(XSi)− f(XSi−)− f ′(XSi−)∆XSi ]

−
∑
{i:Si≤t}

[f(Xn
Si

)− f(Xn
Si−)− f ′(Xn

Si−)∆Xn
Si

]

=
∑

{i>N :Si≤t}

[f(XSi)− f(XSi−)− f ′(XSi−)∆XSi ]

−
∑

{i>N :Si≤t}

[f(Xn
Si

)− f(Xn
Si−)− f ′(Xn

Si−)∆Xn
Si

]

+
∑

{i≤N,Si≤t}

{
[f(XSi)− f(XSi−)− f ′(XSi−)∆XSi ]

− [f(Xn
Si

)− f(Xn
Si−)− f ′(Xn

Si−)∆Xn
Si

]
}

= IN5 − I
n,N
6 + In,N7 .

By the fact that M and A are right continuous with left limits, |∆MSi | ≤
1/2 and |∆ASi | ≤ 1/2 if i is large enough (depending on ω), and then
|∆XSi | ≤ 1, and also

|∆XSi |2 ≤ 2|∆MSi |2 + 2|∆ASi|2

≤ 2|∆MSi |2 + |∆ASi|.
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We have
|IN5 | ≤ ‖f ′′‖∞

∑
i>N,Si≤t

(∆XSi)
2

and
|In,N6 | ≤ ‖f ′′‖∞

∑
n≥i>N,Si≤t

(∆XSi)
2.

Since
∑∞

i=1 |∆MSi |2 ≤ [M ]∞ < ∞ and
∑∞

i=1 |∆ASi | < ∞, then given ε > 0,
we can choose N large such that

P(|IN5 |+ |I
n,N
6 | > ε) < ε.

Once we choose N , we then see that In,N7 tends to 0 in probability as n→∞,
since Xn

t converges in probability to Xt uniformly over t ≥ 0. We conclude
that Jn(t) converges to J(t) in probability as n→∞.

This completes the proof.

3.4 The reduction theorem

Let M be a process adapted to {Ft}. If there exist stopping times Tn increas-
ing to ∞ such that each process Mt∧Tn is a uniformly integrable martingale,
we say M is a local martingale. If each Mt∧Tn is a square integrable martin-
gale, we say M is a locally square integrable martingale. We say a stopping
time T reduces a process M if Mt∧T is a uniformly integrable martingale.

Lemma 3.8 (1) The sum of two local martingales is a local martingale.

(2) If S and T both reduce M , then so does S ∨ T .

(3) If there exist times Tn →∞ such that Mt∧Tn is a local martingale for
each n, then M is a local martingale.

Proof. (1) If the sequence Sn reduces M and the sequence Tn reduces N ,
then Sn ∧ Tn will reduce M +N .

(2) Mt∧(S∨T ) is bounded in absolute value by |Mt∧T | + |Mt∧S|. Both
{|Mt∧T |} and {|Mt∧S|} are uniformly integrable families of random variables.
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Now use that the sum of two uniformly integrable families is uniformly inte-
grable.

(3) Let Snm be a family of stopping times reducing Mt∧Tn and let S ′nm =
Snm ∧ Tn. Renumber the stopping times into a single sequence R1, R2, . . .
and let Hk = R1 ∨ · · · ∨Rk. Note Hk ↑ ∞. To show that Hk reduces M , we
need to show that Ri reduces M and use (2). But Ri = S ′nm for some m,n,
so Mt∧Ri = Mt∧Snm∧Tn is a uniformly integrable martingale.

Let M be a local martingale with M0 = 0. We say that a stopping time
T strongly reduces M if T reduces M and the martingale E [ |MT | | Fs] is
bounded on [0, T ), that is, there exists K > 0 such that

sup
0≤s<T

E [ |MT | | Fs] ≤ K, a.s.

Lemma 3.9 (1) If T strongly reduces M and S ≤ T , then S strongly reduces
M .

(2) If S and T strongly reduce M , then so does S ∨ T .

(3) If Y∞ is integrable, then E [E [Y∞ | FT ] | FS] = E [Y∞ | FS∧T ].

Proof. (1) Note E [ |MS| | Fs] ≤ E [ |MT | | Fs] by Jensen’s inequality, hence
S strongly reduces M .

(2) It suffices to show that E [|MS∨T | | Ft] is bounded for t < T , since by
symmetry the same will hold for t < S. For t < T this expression is bounded
by

E [ |MT | | Ft] + E [ |MS|1(S>T ) | Ft].

The first term is bounded since T strongly reduces M . For the second term,
if t < T ,

1(t<T )E [ |MS|1(S>T ) | Ft] = E [ |MS|1(S>T )1(t<T ) | Ft]
≤ E [ |MS|1(t<S) | Ft]
= E [ |MS| | Ft]1(t<S),

which in turn is bounded since S strongly reduces M .
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(3) Let Yt be the right continuous version of E [X | Ft]. We thus need to
show that E [YS | FT ] = YS∧T . The right hand side is FS∧T measurable and
FS∧T ⊂ FT . We thus need to show that if A ∈ FT , then

E [YS;A] = E [YS∧T ;A].

Let B = (S ≤ T ). We will show

E [YS;A ∩B] = E [YS∧T ;A ∩B] (3.9)

and

E [YS;A ∩Bc] = E [YS∧T ;A ∩Bc] (3.10)

Adding (3.9) and (3.10) will achieve our goal.

Since YS = YS∧T on B, the right hand side of (3.9) is equal to E [YS;A∩B]
as required.

For (3.10), S > T on Bc, so S = S ∨ T on Bc. Also A∩Bc ∈ FT ⊂ FS∨T .
Since Y is a martingale,

E [YS;A ∩Bc] = E [YS∨T ;A ∩Bc] = E [YT ;A ∩Bc] = E [YS∧T ;A ∩Bc],

which is (3.10)

Lemma 3.10 If M is a local martingale with M0 = 0, then there exist stop-
ping times Tn ↑ ∞ that strongly reduce M .

Proof. Let Rn ↑ ∞ be a sequence reducing M . Let

Snm = Rn ∧ inf{t : E [ |MRn| | Ft] ≥ m}.

Arrange the stopping times Snm into a single sequence {Un} and let Tn =
U1 ∨ · · · ∨Un. In view of the preceding lemmas, we need to show Ui strongly
reduces M , which will follow if Snm does for each n and m.
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Let Yt = E [ |MRn| | Ft], where we take a version whose paths are right
continuous with left limits. Y is bounded by m on [0, Snm). By Jensen’s
inequality for conditional expectations and Lemma 3.9

E [ |MSnm|1(t<Snm) | Ft] ≤ E [ |E [ |MRn| | FSnm ]|1(t<Snm) | Ft]
= E [E [ |MRn|1(t<Snm) | FSnm ] | Ft]
= E [ |MRn|1(t<Snm) | FSnm∧t]
= YSnm∧t1(t<Snm)

= Yt1(t<Snm) ≤ m.

We used that 1(t<Snm) is FSnm∧t measurable; to see that we have by Lemma
3.9(3) that

E [1(t<Snm) | FSnm∧t] = E [E [1(t<Snm) | FSnm ] | Ft] = E [1(t<Snm) | Ft]
= 1(t<Snm).

We are done.

Our main theorem of this section is the following.

Theorem 3.11 Suppose M is a local martingale. Then there exist stopping
times Tn ↑ ∞ such that Mt∧Tn = Un

t + V n
t , where each Un is a square

integrable martingale and each V n is a martingale whose paths are of bounded
variation and such that the total variation of the paths of Vn is integrable.
Moreover, Un

t = Un
Tn

and V n
t = V n

Tn
for t ≥ Tn.

The last sentence of the statement of the theorem says that Un and V n

are both constant from time Tn on.

Proof. It suffices to prove that if M is a local martingale with M0 = 0 and
T strongly reduces M , then Mt∧T can be written as U + V with U and V
of the described form. Thus we may assume Mt = MT for t ≥ T , |MT | is
integrable, and E [ |MT | | Ft] is bounded, say by K, on [0, T ).

Let At = MT1(t≥T ) = Mt1(t≥T ), let Ã be the compensator of A, let V =

A−Ã, and let U = M−A+Ã. Then V is a martingale of bounded variation.
We compute the expectation of the total variation of V . Let Bt = M+

T 1(t≥T )

and Ct = M−
T 1(t≥T ). Then the expectation of the total variation of A is
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bounded by E |MT | < ∞ and the expectation of the total variation of Ã is
bounded by

E B̃∞ + E C̃∞ = EB∞ + EC∞ ≤ E |MT | <∞.

We need to show U is square integrable. Note

|Mt − At| = |Mt|1(t<T ) = |E [M∞ | Ft] |1(t<T )

= |E [E [M∞ | FT∨t] | Ft] |1(t<T ) = |E [MT∨t | Ft] |1(t<T )

= |E [MT | Ft] |1(t<T ) ≤ E [ |MT | | Ft]1(t<T ) ≤ K.

Therefore it suffices to show Ã is square integrable.

Our hypotheses imply that E [M+
T | Ft] is bounded by K on [0, T ), hence

E [B∞ − Bt | Ft] is bounded, and so E B̃2
∞ < ∞. Similarly, E C̃2

∞ < ∞.

Since A = B − C, then Ã = B̃ − C̃, and it follows that supt≥0 Ãt is square
integrable.

3.5 Semimartingales

We define a semimartingale to be a process of the form Xt = X0 +Mt +At,
where X0 is finite, a.s., and is F0 measurable, Mt is a local martingale, and
At is a process whose paths have bounded variation on [0, t] for each t.

If Mt is a local martingale, let Tn be a sequence of stopping times as in
Theorem 3.11. We set M c

t∧Tn = (Un)ct for each n and

[M ]t∧Tn = 〈M c〉t∧Tn +
∑

s≤t∧Tn

∆M2
s .

It is easy to see that these definitions are independent of how we decompose
of M into Un + V n and of which sequence of stopping times Tn strongly
reducing M we choose. We define 〈Xc〉t = 〈M c〉t and define

[X]t = 〈Xc〉t +
∑
s≤t

∆X2
s .

We say an adapted process H is locally bounded if there exist stopping
times Sn ↑ ∞ and constants Kn such that on [0, Sn] the process H is bounded
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by Kn. If Xt is a semimartingale and H is a locally bounded predictable
process, define

∫ t
0
Hs dXs as follows. Let Xt = X0 + Mt + At. If Rn =

Tn ∧ Sn, where the Tn are as in Theorem 3.11 and the Sn are the stopping
times used in the definition of locally bounded, set

∫ t∧Rn
0

Hs dMs to be the

stochastic integral as defined in Section 3.2. Define
∫ t∧Rn

0
Hs dAs to be the

usual Lebesgue-Stieltjes integral. Define the stochastic integral with respect
to X as the sum of these two. Since Rn ↑ ∞, this defines

∫ t
0
Hs dXs for all t.

One needs to check that the definition does not depend on the decomposition
of X into M and A nor on the choice of stopping times Rn.

We now state the general Itô formula.

Theorem 3.12 Suppose X is a semimartingale and f is C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−) dXs + 1
2

∫ t

0

f ′′(Xs−) d〈Xc〉s

+
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

Proof. First suppose f has bounded first and second derivatives. Let Tn
be stopping times strongly reducing Mt, let Sn = inf{t :

∫ t
0
|dAs| ≥ n}, let

Rn = Tn ∧ Sn, and let Xn
t = Xt∧Rn −∆ARn . Since the total variation of At

is bounded on [0, Rn), it follows that Xn is a semimartingale which is the
sum of a square integrable martingale and a process whose total variation
is integrable. We apply Theorem 3.7 to this process. Xn

t agrees with Xt on
[0, Rn). As in the proof of Theorem 3.7, by looking at the jump at time Rn,
both sides of Itô’s formula jump the same amount at time Rn, and so Itô’s
formula holds for Xt on [0, Rn]. If we now only assume that f is C2, we
approximate f by a sequence fm of functions that are C2 and whose first and
second derivatives are bounded, and then let m → ∞; we leave the details
to the reader. Thus Itô’s formula holds for t in the interval [0, Rn] and for
f without the assumption of bounded derivatives. Finally, we observe that
Rn →∞, so except for a null set, Itô’s formula holds for each t.

The proof of the following corollary is similar to the proof of Itô’s formula.



54 CHAPTER 3. STOCHASTIC CALCULUS

Corollary 3.13 If Xt = (X1
t , . . . , X

d
t ) is a process taking values in Rd such

that each component is a semimartingale, and f is a C2 function on Rd, then

f(Xt) = f(X0) +

∫ t

0

d∑
i=1

∂f

∂xi
(Xs−) dX i

s

+ 1
2

∫ t

0

d∑
i,j=1

∂2f

∂xi∂xj
(Xs−) d〈(X i)c, (Xj)c〉s

+
∑
s≤t

[
f(Xs)− f(Xs−)−

d∑
i=1

∂f

∂xi
(Xs−)∆X i

s

]
,

where 〈Y, Z〉t = 1
2
[〈Y + Z〉t − 〈Y 〉t − 〈Z〉t].

If X and Y are real-valued semimartingales, define

[X, Y ]t = 1
2
([X + Y ]t − [X]t − [Y ]t). (3.11)

The following corollary is the product formula for semimartingales with
jumps.

Corollary 3.14 If X and Y are semimartingales of the above form,

XtYt = X0Y0 +

∫ t

0

Xs− dYs +

∫ t

0

Ys− dXs + [X, Y ]t.

Proof. Apply Theorem 3.12 with f(x) = x2. Since in this case

f(Xs)− f(Xs−)− f ′(Xs−)∆Xs = ∆X2
s ,

we obtain

X2
t = X2

0 + 2

∫ t

0

Xs− dXs + [X]t. (3.12)

Applying (3.12) with X replaced by Y and by X + Y and using

XtYt = 1
2
[(Xt + Yt)

2 −X2
t − Y 2

t ]

gives our result.
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3.6 The Girsanov theorem

Let P and Q be two equivalent probability measures, that is, P and Q are
mutually absolutely continuous. Let M∞ be the Radon-Nikodym derivative
of Q with respect to P and let Mt = E [M∞ | Ft]. The martingale Mt is
uniformly integrable since M∞ ∈ L1(P). Once a non-negative martingale
hits zero, it is easy to see that it must be zero from then on. Since Q and P
are equivalent, then M∞ > 0, a.s., and so Mt never equals zero, a.s. Observe
that MT is the Radon-Nikodym derivative of Q with respect to P on FT .

If A ∈ Ft, we have

Q(A) = E P[M∞;A] = E P[Mt;A],

using that M is a martingale.

Theorem 3.15 Suppose X is a local martingale with respect to P. Then
Xt −Dt is a local martingale with respect to Q, where

Dt =

∫ t

0

1

Ms

d[X,M ]s.

Note that in the formula for D, we are using a Lebesgue-Stieltjes integral.

Proof. Since E Q[Xt −Dt;A] = E P[Mt(Xt −Dt);A] if A ∈ Ft and the same
with t replaced by s, it suffices to show that Mt(Xt−Dt) is a local martingale
with respect to P. By Corollary 3.14,

d(M(X −D))t = (X −D)t− dMt +Mt− dXt −Mt− dDt

+ d[M,X −D]t.

The first two terms on the right are local martingales with respect to P. Since
D is of bounded variation, the continuous part of D is zero, hence

[M,D]t =
∑
s≤t

∆Ms∆Ds =

∫ t

0

∆Ms dDs.

Thus

Mt(Xt −Dt) = local martingale + [M,X]t −
∫ t

0

Ms dDs.

Using the definition of D shows that Mt(Xt −Dt) is a local martingale.
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Chapter 4

Stochastic differential equations

4.1 Poisson point processes

Poisson point processes are random measures that are related to Poisson
processes. Poisson point processes are also useful in the study of excursions,
even excursions of a continuous process such as Brownian motion, and they
arise when studying stochastic differential equations with jumps.

Let S be a metric space, G the collection of Borel subsets of S, and λ a
measure on (S,G).

Definition 4.1 We say a map

N : Ω× [0,∞)× G → {0, 1, 2, . . .}

(writing Nt(A) for N(ω, t, A)) is a Poisson point process if

(1) for each Borel subset A of S with λ(A) < ∞, the process Nt(A) is a
Poisson process with parameter λ(A), and

(2) for each t and ω, N(t, ·) is a measure on G.

A model to keep in mind is where S = R and λ is Lebesgue measure. For
each ω there is a collection of points {(s, z)} (where the collection depends
on ω). The number of points in this collection with s ≤ t and z in a subset
A is Nt(A)(ω). Since λ(R) = ∞, there are infinitely many points in every
time interval.
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Another example is to let X be a Lévy process and let Nt(A) be the
number of jumps of size A before time t. A consequence of the definition is
that since λ(∅) = 0, then Nt(∅) is a Poisson process with parameter 0; in
other words, Nt(∅) is identically zero.

Our main result is that Nt(A) and Nt(B) are independent if A and B are
disjoint.

Theorem 4.2 Let {Ft} be a filtration satisfying the usual conditions. Let S
be a metric space furnished with a positive measure λ. Suppose that Nt(A)
is a Poisson point process with respect to the measure λ. If A1, . . . , An are
pairwise disjoint measurable subsets of S with λ(Ak) < ∞ for k = 1, . . . , n,
then the processes Nt(A1), . . . , Nt(An) are mutually independent.

This is proved exactly the same way we proved that Nt(A) and Nt(B) are
independent in the study of Lévy processes.

We now turn to stochastic integrals with respect to Poisson point pro-
cesses. In the same way that a non-decreasing function on the reals gives
rise to a measure, so Nt(A) gives rise to a random measure µ(dt, dz) on the
product σ-field B[0,∞)× G, where B[0,∞) is the Borel σ-field on [0,∞); µ
is determined by

µ([0, t]× A)(ω) = Nt(A)(ω);

Define a non-random measure ν on B[0,∞)× G by ν([0, t]×A) = tλ(A) for
A ∈ G. If λ(A) <∞, then µ([0, t]×A)−ν([0, t]×A) is the same as a Poisson
process minus its mean, hence is locally a square integrable martingale.

We can define a stochastic integral with respect to the random measure
µ− ν as follows. Suppose H(ω, s, z) is of the form

H(ω, s, z) =
n∑
i=1

Ki(ω)1(ai,bi](s)1Ai(z), (4.1)

where for each i the random variable Ki is bounded and Fai measurable and
Ai ∈ G with λ(Ai) <∞. For such H we define

Nt =

∫ t

0

∫
H(ω, s, z) d(µ− ν)(ds, dz) (4.2)

=
n∑
i=1

Ki(µ− ν)(((ai, bi] ∩ [0, t])× Ai).
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Let us assume without loss of generality that the Ai are disjoint. It is not
hard to see that Nt is a martingale, that N c = 0, and that

[N ]t =

∫ t

0

∫
H(ω, s, z)2 µ(ds, dz). (4.3)

Since 〈N〉t must be predictable and all the jumps ofN are totally inaccessible,
it follows that 〈N〉t is continuous. Since [N ]t − 〈N〉t is a martingale, we
conclude

〈N〉t =

∫ t

0

∫
H(ω, s, z)2 ν(ds, dz). (4.4)

Suppose H(s, z) is predictable process in the following sense: H is measur-
able with respect to the σ-field generated by all processes of the form (4.1).
Suppose also that

E
∫ ∞

0

∫
S
H(s, z)2 ν(ds, dz) <∞.

Take processes Hn of the form (4.1) converging to H in the space L2 with
norm (E

∫∞
0

∫
S H

2 dν)1/2. The corresponding Nn
t =

∫ t
0
Hn(s, z) d(µ− ν) are

easily seen to be a Cauchy sequence in L2, and the limit Nt we call the
stochastic integral of H with respect to µ− ν. As in the continuous case, we
may prove that EN2

t = E [N ]t = E 〈N〉t, and it follows from this, (4.3), and
(4.4) that

[N ]t =

∫ t

0

∫
S
H(s, z)2 µ(ds, dz), 〈N〉t =

∫ t

0

∫
S
H(s, z)2 ν(ds, dz). (4.5)

One may think of the stochastic integral as follows: if µ gives unit mass to
a point at time t with value z, then Nt jumps at this time t and the size of
the jump is H(t, z).

4.2 The Lipschitz case

We consider the the stochastic differential equation (SDE)

Xt = x0 +

∫ t

0

∫
F (Xs−, z)[µ(dz, ds)− ν(dz, ds)]. (4.6)



60 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS

Theorem 4.3 Suppose there is a constant c such that∫
sup
x
F (x, z)2 λ(dz) <∞

and ∫
|F (x, z)− F (y, z)|2 λ(dz) ≤ c|x− y|2.

Then there exists a solution to (4.6) and the solution is pathwise unique.

Proof. Let X0
t = x0 and define

Xn+1
t = x0 +

∫ t

0

∫
F (Xn

s−, z)[µ(dz, ds)− ν(dz, ds)].

Xn is a martingale, and by Doob’s inequality,

E sup
s≤t
|Xn+1

s −Xn
s |2 ≤ 4E |Xn+1

t −Xn
t |2

= 4E
∫ t

0

∫
[F (Xn

s−, z)− F (Xn−1
s− , z)|2 λ(dz) ds

≤ 4c

∫ t

0

|Xn
s− −Xn−1

s− |2 ds.

If we let
gn(t) = E sup

s≤t
|Xn

s −Xn−1
s |2,

we then have

gn(t) ≤ A

∫ t

0

gn−1(s) ds.

Since g1 is easily seen to be bounded, say, by B, we have by induction that
g2(t) ≤ ABt, g3(t) ≤ A2Bt2/2, and so on, and therefore

∞∑
n=1

gn(t)1/2 <∞.

It follows that
∑

sups≤t |Xn
s −Xn−1

s | converges in L2, and it is routine to see
that therefore Xt = limXn

t exists and is the solution to (4.6).
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If X and Y are two solutions and g(t) = E sups≤t |Xs − Ys|2, we obtain
similarly that

g(t) ≤ A

∫ t

0

g(s) ds.

We may also assume that g is bounded by B for t ≤ t0. We then obtain
g(t) ≤ ABt, g(t) ≤ A2Bt2/2!, and so on, and therefore g must be identically
zero, or we have pathwise uniqueness.

4.3 Analogue of Yamada-Watanabe theorem

Our main result in this section is the analogue of the Yamada-Watanabe
condition for diffusions. We suppose X is a symmetric stable process of
index α ∈ (1, 2) and look at the equation

dVt = F (Vt−) dXt. (4.7)

Theorem 4.4 Suppose α ∈ (1, 2), suppose F is bounded and continuous, and
suppose ρ is a nondecreasing continuous function on [0,∞) with ρ(0) = 0 and
|F (x)− F (y)| ≤ ρ(|x− y|) for all x, y ∈ R. If∫

0+

1

ρ(x)α
dx =∞, (4.8)

then the solution to the SDE (4.7) is pathwise unique.

We normalize our symmetric stable processes so that
∑

s≤t 1{|∆Xs|∈A} is a

Poisson process with parameter
∫
A
|y|−1−αdy.

Recall (2.8), (2.9), and (2.10).

Suppose Xt is a symmetric stable process of index α ∈ (1, 2). We define
the Poisson point process µ by

µ(A× [0, t]) =
∑
s≤t

1A(∆Xs),
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the number of times before time t that Xt has jumps whose size lies in the
set A. We define the compensating measure ν by

ν(A) = Eµ(A× [0, 1]) =

∫
A

1

|x|1+α
dx.

Set

Lf(x) =

∫
[f(x+ w)− f(x)− f ′(x)w] |w|−1−αdw (4.9)

for C2
b functions f , where C2

b is the set of C2 functions f such that f , f , and
f ′′ are bounded. There is convergence of the integral for large w since α > 1.
There is convergence for small w by using Taylor’s theorem and the fact that
α < 2.

For C2
b functions L coincides with the infinitesimal generator of X. Let

us explain this further.

If Xt is a Lévy process with Lévy measure m, then

E eiu(Xt+x) − eiux = eiux
(
E eiuXt − 1

)
= eiux

(
et

∫
[eiuh−1−iuh1(|h|≤1)]m(dh) − 1

)
.

Dividing by t and letting t→ 0,

lim
t→0

E eiu(Xt+x) − eiux

t
= eiux

∫
[eiuh − 1− iuh1(|h|≤1)]m(dh).

Replacing u by −u, multiplyng by 1
2π
f̂(u), and integrating u over R, we get

lim
t→0

E f(Xt + x)− f(x)

t
=

∫
[f(x+h)−f(x)−hf ′(x)1(|h|≤1)]m(dh) = Lf(x),

or

lim
t→0

Ptf(x)− f(x)

t
= Lf(x),

provided f ∈ C2
b , the collection of C2 functions such that f , f ′, and f ′′ are

bounded and provided one shows that it is valid to interchange the limit with
the integral in two places (it is).

There is a slight discrepancy here in the definition of L. We use that
for α ∈ (1, 2) and m(dw) = |w|−(1+α dw, we have that

∫
w1(|w|>1)m(dw) is

integrable and equals 0.
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Let

Gλf(x) =

∫ ∞
0

e−λsPsf(x) ds

where Psf(x) = E f(Xs + x). We have

PtGλf(x) =

∫ ∞
0

e−λsPs+tf(x) ds = eλt
∫ ∞

0

e−λ(s+t)Ps+tf(x) ds

= eλt
∫ ∞
t

e−λsPsf(x) ds

= (eλt − 1)

∫ ∞
t

e−λsPsf(x) ds+

∫ ∞
t

e−λsPsf(x) ds.

So

PtGλf(x)−Gλf(x)

t
=
eλt − 1

t

∫ ∞
t

e−λsPsf(x) ds−
∫ t

0

e−λsPsf(x) ds.

Since Psf(x) = E f(Xs + x)→ f(x) as s→ 0, we obtain

LGλf(x) = λGλf(x)− f(x).

Proposition 4.5 Suppose α ∈ (1, 2), f is in C2
b , and

Zt =

∫ t

0

Hs dXs,

where Ht is a bounded predictable process. Then

f(Zt) = f(Z0) +Mt +

∫ t

0

|Hs|αLf(Zs−)ds, (4.10)

where Mt is a martingale.

Proof. Let Xn
t =

∑
s≤t ∆Xs1(|∆Xs|≤n) and Y n

t = Xt − Xn
t . Then Xn

t is a
Lévy process with symmetric Lévy measure which is equal to ν on [−n, n]
and 0 outside this interval. Hence Xn

t is a square integrable martingale and
so
∫ t

0
HsdX

n
s is also a square integrable martingale since H is bounded. On

the other hand

E
∣∣∣∫ t

0

HsdY
n
s

∣∣∣ ≤ ‖H‖∞E ∑
s≤t

|∆Xs|1(|∆Xs|>n) <∞
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because α ∈ (1, 2). The right hand side tends to 0 as n→∞ by dominated
convergence. Therefore Zt is the L1 limit of the square integrable martingales∫ t

0
Hs dX

n
s , and it follows that Zt is a martingale.

Write K(s, y) for [f(Zs−+Hsy)−f(Zs−)−f ′(Zs−)Hsy]. Note that ∆Zs =
Hs∆Xs. Note also that |K(s, y)| is bounded by a constant times (|y| ∧ y2).
If f ∈ C2

b , we have by Ito’s formula that

f(Zt) = f(Z0) +

∫ t

0

f ′(Zs−)dZs +
∑
s≤t

[f(Zs)− f(Zs−)− f ′(Zs−)∆Zs]

= f(Z0) +

∫ t

0

f ′(Zs−)dZs +

∫ t

0

∫
K(s, y)µ(dy, ds)

= f(Z0) +Mt +

∫ t

0

∫
K(s, y)ν(dy)ds,

where

Mt =

∫ t

0

f ′(Zs−)dZs +

∫ t

0

∫
K(s, y)(µ(dy, ds)− ν(dy)ds).

The first term on the right is a martingale by the argument of the first
paragraph of this proof. For each m we have then that

∫
|y|≤mK(s, y)2ν(dy)

is bounded, and so for each m

Wm
t =

∫ t

0

∫
|y|≤m

K(s, y)(µ(dy, ds)− ν(dy)ds)

is a martingale. Since W k
t −Wm

t is a martingale for each k, then

E
∫ t

0

∫
m<|y|≤k

|K(s, y)|(µ(dy, ds) + ν(dy)ds) ≤ c1

∫ t

0

∫
m<|y|≤k

|y|ν(dy)ds

≤ c2m
1−α,

where c1 and c2 are positive finite constants not depending on m or k. Letting
k →∞, we see that

E
∫ t

0

∫
m<|y|

|K(s, y)|(µ(dy, ds) + ν(dy)ds) ≤ c2m
1−α.

Therefore Mt is the limit in L1 of the martingales
∫ t

0
f(Zs−)dZs + Wm

t , and
hence is itself a martingale.



4.3. ANALOGUE OF YAMADA-WATANABE THEOREM 65

We make the change of variable w = Hsy. Since y → Hsy is monotone if
Hs 6= 0 we have that the integral with respect to ν(dy) is∫

[f(Zs− +Hsy)−f(Zs−)− f ′(Zs−)Hsy]
dy

|y|1+α

=

∫
[f(Zs− + w)− f(Zs−)− f ′(Zs−)w]|Hs|α|w|−1−αdw,

= |Hs|αLf(Zs−)

if Hs 6= 0. This equality clearly also holds when Hs = 0. We therefore arrive
at (4.10).

We note for future reference that we have shown (take Hs = 1 a.s.) that
f(Xt)− f(X0)−

∫ t
0
Lf(Xs) ds is a martingale if f ∈ C2

b .

We now prove Theorem 4.4.

Proof of Theorem 4.4. Let Y 1 and Y 2 be any two solutions to (4.7), let
Zt = Y 1

t − Y 2
t , and let Ht = F (Y 1

t−)− F (Y 2
t−). Then Zt =

∫ t
0
HsdXs.

Let an be numbers decreasing to 0 so that
∫ an
an+1

ρ(x)−αdx = n. For each n

let hn be a nonnegative C2 function with support in [an+1, an] whose integral
is 1, and with hn(x) ≤ 2/(nρ(x)α). This is possible since∫ an

an+1

1/(nρ(x)α)dx = 1.

Fix λ > 0, let gλ(x) =
∫∞

0
e−λtpt(x, 0)dt, where pt(x, y) is the transition

density for Xt, and let Gλf(x) =
∫
f(y)gλ(x−y)dy. We have shown that that

gλ(x) is bounded, and is continuous in x. Furthermore, gλ(x) < gλ(0) if x 6= 0.
Let fn(x) = Gλhn(x). By interchanging differentiation and integration and
using translation invariance, fn is in C2

b since hn is C2
b .

Define At =
∫ t

0
|Hs|αds. By Ito’s product formula,

E e−λAtfn(Zt)− fn(0)

= E
∫ t

0

e−λAsd[fn(Zs)]− E
∫ t

0

e−λAsλ|Hs|αfn(Zs−)ds

= E
∫ t

0

e−λAs |Hs|αLfn(Zs−)ds− E
∫ t

0

e−λAsλ|Hs|αfn(Zs−)ds.
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Since Lfn = LGλhn = λGλhn − hn = λfn − hn, we have

fn(0)− E e−λAtfn(Zt) = E
∫ t

0

e−λAs|Hs|αhn(Zs−)ds.

Note |Hs| ≤ ρ(|Zs−|), so using our bound for hn, the right hand side is less
than 2t/n in absolute value, which tends to 0 as n → ∞. The measures
hn(y)dy all have mass 1 and they tend weakly to point mass at 0. Since gλ
is continuous in x, then fn(x)→ gλ(x) as n→∞. We conclude

gλ(0)− E e−λAtgλ(Zt) = 0.

We noted above that gλ(x) < gλ(0) if x 6= 0, while clearly At <∞ since F is
bounded. We deduce P(Zt = 0) = 1. This holds for each t, and we conclude
that Z is identically 0.

Remark 4.6 The above proof breaks down for α = 1 since gλ is no longer
a bounded function.



Chapter 5

The space D[0, 1]

5.1 Convergence of probability measures

We suppose we have a sequence of probabilities on a metric space S and we
want to define what it means for the sequence to converge weakly. Alter-
nately, we may have a sequence of random variables and want to say what it
means for the random variables to converge weakly.

For now our state space is assumed to be an arbitrary metric space, al-
though we will soon add additional assumptions on S. We use the Borel
σ-field on S, which is the σ-field generated by the open sets in S. We write
A0, A, and ∂A for the interior, closure, and boundary of A, resp.

5.2 The portmanteau theorem

Clearly the definition of weak convergence of real-valued random variables
in terms of distribution functions has no obvious analog. The appropriate
generalization is the following.

Definition 5.1 A sequence of probabilities {Pn} on a metric space S fur-
nished with the Borel σ-field is said to converge weakly to P if

∫
f dPn →∫

f dP for every bounded and continuous function f on S. A sequence of
random variables {Xn} taking values in S converges weakly to a random
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variable X taking values in S if E f(Xn)→ E f(X) whenever f is a bounded
and continuous function.

Saying Xn converges weakly to X is the same as saying that the laws of
Xn converge weakly to the law of X. To see this, if Pn is the law of Xn, that
is, Pn(A) = P(Xn ∈ A) for each Borel subset A of S, then E f(Xn) =

∫
f dPn

and E f(X) =
∫
f dP. (This holds when f is an indicator by the definition

of the law of Xn and X, then for simple functions by linearity, then for
non-negative measurable functions by monotone convergence, and then for
arbitrary bounded and Borel measurable f by linearity.)

The following theorem, known as the portmanteau theorem, gives some
other characterizations of weak convergence. For this chapter we let

Fδ = {x : d(x, F ) < δ} (5.1)

for closed sets F , the set of points within δ of F , where d(x, F ) = inf{d(x, y) :
y ∈ F}.

Theorem 5.2 Suppose {Pn, n = 1, 2, . . .} and P are probabilities on a metric
space. The following are equivalent.

(1) Pn converges weakly to P.

(2) lim supn Pn(F ) ≤ P(F ) for all closed sets F .

(3) lim infn Pn(G) ≥ P(G) for all open sets G.

(4) limn Pn(A) = P(A) for all Borel sets A such that P(∂A) = 0.

Proof. The equivalence of (2) and (3) is easy because if F is closed, then
G = F c is open and Pn(G) = 1− Pn(F ).

To see that (2) and (3) imply (4), suppose P(∂A) = 0. Then

lim sup
n

Pn(A) ≤ lim sup
n

Pn(A) ≤ P(A)

= P(A0) ≤ lim inf Pn(A0) ≤ lim inf Pn(A).

Next, let us show (4) implies (2). Let F be closed. If y ∈ ∂Fδ, then
d(y, F ) = δ. The sets ∂Fδ are disjoint for different δ. At most countably
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many of them can have positive P-measure, hence there exists a sequence
δk ↓ 0 such that P(∂Fδk) = 0 for each k. Then

lim sup
n

Pn(F ) ≤ lim sup
n

Pn(Fδk) = P(Fδk) = P(Fδk)

for each k. Since P(Fδk) ↓ P(F ) as δk → 0, this gives (2).

We show now that (1) implies (2). Suppose F is closed. Let ε > 0. Take
δ > 0 small enough so that P(Fδ) − P(F ) < ε. Then take f continuous, to
be equal to 1 on F , to have support in Fδ, and to be bounded between 0 and
1. For example, f(x) = 1− (1 ∧ δ−1d(x, F )) would do. Then

lim sup
n

Pn(F ) ≤ lim sup
n

∫
fdPn =

∫
fdP

≤ P(Fδ) ≤ P(F ) + ε.

Since this is true for all ε, (2) follows.

Finally, let us show (2) implies (1). Let f be bounded and continuous. If
we show

lim sup
n

∫
fdPn ≤

∫
fdP, (5.2)

for every such f , then applying this inequality to both f and −f will give (1).
By adding a sufficiently large positive constant to f and then multiplying by
a suitable constant, without loss of generality we may assume f is bounded
and takes values in (0, 1). Let Fi = {x : f(x) ≥ i/k}, which is closed.

∫
fdPn ≤

k∑
i=1

i

k
Pn
(i− 1

k
≤ f(x) <

i

k

)
=

k∑
i=1

i

k
[Pn(Fi−1)− Pn(Fi)]

=
k−1∑
i=0

i+ 1

k
Pn(Fi)−

k∑
i=1

i

n
Pn(Fi)

≤ 1

k
+

1

k

k∑
i=1

Pn(Fi).
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Similarly, ∫
fdP ≥ 1

k

k∑
i=1

P(Fi).

Then

lim sup
n

∫
fdPn ≤

1

k
+

1

k

k∑
i=1

lim sup
n

Pn(Fi)

≤ 1

k
+

1

k

k∑
i=1

P(Fi) ≤
1

k
+

∫
fdP.

Since k is arbitrary, this gives (5.2).

If xn → x, Pn = δxn , and P = δx, it is easy to see Pn converges weakly to P.
Letting A = {x} shows that one cannot, in general, have limn Pn(F ) = P(F )
for all closed sets F .

5.3 The Prohorov theorem

It turns out there is a simple condition that ensures that a sequence of prob-
ability measures has a weakly convergent subsequence.

Definition 5.3 A sequence of probabilities Pn on a metric space S is tight
if for every ε there exists a compact set K (depending on ε) such that
supn Pn(Kc) ≤ ε.

The important result here is Prohorov’s theorem.

Theorem 5.4 If a sequence of probability measures on a metric space S is
tight, there is a subsequence that converges weakly to a probability measure
on S.

Proof. Suppose first that the metric space S is compact. Then C(S), the
collection of continuous functions on S, is a separable metric space when
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furnished with the supremum norm. Let {fi} be a countable collection of
non-negative elements of C(S) whose linear span is dense in C(S). For each
i,
∫
fi dPn is a bounded sequence, so we have a convergent subsequence. By

a diagonalization procedure, we can find a subsequence n′ such that
∫
fi dPn′

converges for all i. By the term “diagonalization procedure,” we are referring
to the well known method of proof of the Ascoli-Arzelà theorem; see any
book on real analysis for a detailed explanation. Call the limit Lfi. Clearly
0 ≤ Lfi ≤ ‖fi‖∞, L is linear, and so we can extend L to a bounded linear
functional on S. By the Riesz representation theorem, there exists a measure
P such that Lf =

∫
fdP. Since

∫
fi dPn′ →

∫
fi dP for all fi, it is not hard to

see, since each Pn′ has total mass 1, that
∫
f dPn′ →

∫
f dP for all f ∈ C(S).

Therefore Pn′ converges weakly to P. Since Lf ≥ 0 if f ≥ 0, then P is a
positive measure. The function that is identically equal to 1 is bounded and
continuous, so 1 = Pn′(S) =

∫
1 dPn′ →

∫
1 dP, or P(S) = 1.

Next suppose that S is a Borel subset of a compact metric space S ′.
Extend each Pn, initially defined on S, to S ′ by setting Pn(S ′ \ S) = 0. By
the first paragraph of the proof, there is a subsequence Pn′ that converges
weakly to a probability P on S ′ (the definition of weak convergence here is
relative to the topology on S ′). Since the Pn are tight, there exist compact
subsets Km of S such that Pn(Km) ≥ 1− 1/m for all n. The Km will also be
compact relative to the topology on S ′, so by Theorem 5.2,

P(Km) ≥ lim sup
n′

Pn′(Km) ≥ 1− 1/m.

Since ∪mKm ⊂ S, we conclude P(S) = 1.

If G is open in S, then G = H ∩ S for some H open in S ′. Then

lim inf
n′

Pn′(G) = lim inf
n′

Pn′(H) ≥ P(H) = P(H ∩ S) = P(G).

Thus by Theorem 5.2, Pn′ converges weakly to P relative to the topology on
S.

Now let S be an arbitrary metric space. Since all the Pn’s are supported
on ∪mKm, we can replace S by ∪mKm, or we may as well assume that S is
σ-compact, and hence separable. It remains to embed the separable metric
space S into a compact metric space S ′. If d is the metric on S, d ∧ 1 will
also be an equivalent metric, that is, one that generates the same collection
of open sets, so we may assume d is bounded by 1. Now S can be embedded
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in S ′ = [0, 1]N as follows. We define a metric on S ′ by

d′(a, b) =
∞∑
i=1

2−i(|ai − bi| ∧ 1), a = (a1, a2, . . .), b = (b1, b2, . . .). (5.3)

Being the product of compact spaces, S ′ is itself compact. If {zj} is a count-
able dense subset of S, let I : S → [0, 1]N be defined by

I(x) = (d(x, z1), d(x, z2), . . .).

We leave it to the reader to check that I is a one-to-one continuous open
map of S to a subset of S ′. Since S is σ-compact, and the continuous image
of compact sets is compact, then I(S) is a Borel set.

5.4 Metrics for D[0, 1]

We define the space D[0, 1] to be the collection of real-valued functions on
[0, 1] which are right continuous with left limits. We will introduce a topology
on D = D[0, 1], the Skorokhod topology, which makes D into a complete
separable metric space.

We write f(t−) for lims<t,s→t f(s). We will need the following observation.
If f is in D and ε > 0, let t0 = 0, and for i > 0 let ti+1 = inf{t > ti :
|f(t) − f(ti)| > ε} ∧ 1. Because f is right continuous with left limits, then
from some i on, ti must be equal to 1.

Our first try at a metric, ρ, makes D into a separable metric space, but
one that is not complete. Let’s start with ρ anyway, since we need it on the
way to the metric d we end up with.

Let Λ be the set of functions λ from [0, 1] to [0, 1] that are continuous,
strictly increasing, and such that λ(0) = 0, λ(1) = 1. Define

ρ(f, g) = inf{ε > 0 : ∃λ ∈ Λ such that sup
t∈[0,1]

|λ(t)− t| < ε,

sup
t∈[0,1]

|f(t)− g(λ(t))| < ε}.

Since the function λ(t) = t is in Λ, then ρ(f, g) is finite if f, g ∈ D. Clearly
ρ(f, g) ≥ 0. If ρ(f, g) = 0, then either f(t) = g(t) or else f(t) = g(t−) for
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each t; since elements of D are right continuous with left limits, it follows
that f = g. If λ ∈ Λ, then so is λ−1 and we have, setting s = λ−1(t) and
noting both s and t range over [0, 1],

sup
t∈[0,1]

|λ−1(t)− t| = sup
s∈[0,1]

|s− λ(s)|

and

sup
t∈[0,1]

|f(λ−1(t))− g(t)| = sup
s∈[0,1]

|f(s)− g(λ(s))|,

and we conclude ρ(f, g) = ρ(g, f). The triangle inequality follows from

sup
t∈[0,1]

|λ2 ◦ λ1(t)− t| ≤ sup
t∈[0,1]

|λ1(t)− t|+ sup
s∈[0,1]

|λ2(s)− s|

and

sup
t∈[0,1]

|f(t)− h(λ2 ◦ λ1(t))| ≤ sup
t∈[0,1]

|f(t)− g(λ1(t))|

+ sup
s∈[0,1]

|g(s)− h(λ2(s))|.

Look at the set of f in D for which there exists an integer k such that f
is constant and equal to a rational on each interval [(i− 1)/k, i/k). It is not
hard to check that the collection of such f ’s is dense in D with respect to ρ,
which shows (D, ρ) is separable.

The space D with the metric ρ is not, however, complete; one can show
that fn = 1[1/2,1/2+1/n] is a Cauchy sequence which does not converge. We
therefore introduce a slightly different metric d. Define

‖λ‖ = sup
s 6=t,s,t∈[0,1]

∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣
and let

d(f, g) = inf{ε > 0 : ∃λ ∈ Λ such that ‖λ‖ ≤ ε, sup
t∈[0,1]

|f(t)− g(λ(t))| ≤ ε.}

Note ‖λ−1‖ = ‖λ‖ and ‖λ2 ◦ λ1‖ ≤ ‖λ1‖+ ‖λ2‖. The symmetry of d and the
triangle inequality follow easily from this, and we conclude d is a metric.



74 CHAPTER 5. THE SPACE D[0, 1]

Lemma 5.5 There exists ε0 such that

ρ(f, g) ≤ 2d(f, g)

if d(f, g) < ε0.

(It turns out ε0 = 1/4 will do.)

Proof. Since log(1 + 2x)/(2x)→ 1 as x→ 0, we have

log(1− 2ε) < −ε < ε < log(1 + 2ε)

if ε is small enough. Suppose d(f, g) < ε and λ is the element of Λ such that
d(f, g) < ‖λ‖ < ε and supt∈[0,1] |f(t)− g(λ(t))| < ε. Since λ(0) = 0, we have

log(1− 2ε) < −ε < log
λ(t)

t
< ε < log(1 + 2ε), (5.4)

or

1− 2ε <
λ(t)

t
< 1 + 2ε, (5.5)

which implies |λ(t)− t| < 2ε, and hence ρ(f, g) ≤ 2d(f, g).

We define the analog ξf of the modulus of continuity for a function in D
as follows. Define θf [a, b) = sups,t∈[a,b) |f(t)− f(s)| and

ξf (δ) = inf{max
1≤i≤n

θf [ti−1, ti) : ∃n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

such that ti − ti−1 > δ for all i ≤ n}.

Observe that if f ∈ D, then ξf (δ) ↓ 0 as δ ↓ 0.

Lemma 5.6 Suppose δ < 1/4. Let f ∈ D. If ρ(f, g) < δ2, then d(f, g) ≤
4δ + ξf (δ).

Proof. Choose ti’s such that ti− ti−1 > δ and θf [ti−1, ti) < ξf (δ)+δ for each
i. Pick µ ∈ Λ such that supt |f(t) − g(µ(t))| < δ2 and supt |µ(t) − t| < δ2.
Then supt |f(µ−1(t)) − g(t)| < δ2. Set λ(ti) = µ(ti) and let λ be linear in
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between. Since µ−1(λ(ti)) = ti for all i, then t and µ−1 ◦ λ(t) always lie in
the same subinterval [ti−1, ti). Consequently

|f(t)− g(λ(t))| ≤ |f(t)− f(µ−1(λ(t)))|+ |f(µ−1(λ(t)))− g(λ(t))|
≤ ξf (δ) + δ + δ2 < ξf (δ) + 4δ.

We have

|λ(ti)− λ(ti−1)− (ti − ti−1)| = |µ(ti)− µ(ti−1)− (ti − ti−1)|
≤ 2δ2 < 2δ(ti − ti−1).

Since λ is defined by linear interpolation,

|λ(t)− λ(s))− (t− s)| ≤ 2δ|t− s|, s, t ∈ [0, 1],

which leads to ∣∣∣λ(t)− λ(s)

t− s
− 1
∣∣∣ ≤ 2δ,

or

log(1− 2δ) ≤ log
(λ(t)− λ(s)

t− s

)
≤ log(1 + 2δ).

Since δ < 1
4
, we have ‖λ‖ ≤ 4δ.

Proposition 5.7 The metrics d and ρ are equivalent, i.e., they generate the
same topology.

In particular, (D, d) is separable.

Proof. Let Bρ(f, r) denote the ball with center f and radius r with respect
to the metric ρ and define Bd(f, r) analogously. Let ε > 0 and let f ∈ D.
If d(f, g) < ε/2 and ε is small enough, then ρ(f, g) ≤ 2d(f, g) < ε, and so
Bd(f, ε/2) ⊂ Bρ(f, ε).

To go the other direction, what we must show is that given f and ε, there
exists δ such that Bρ(f, δ) ⊂ Bd(f, ε). δ may depend on f ; in fact, it has
to in general, for otherwise a Cauchy sequence with respect to d would be a
Cauchy sequence with respect to ρ, and vice versa. Choose δ small enough
that 4δ1/2 + ξf (δ

1/2) < ε. By Lemma 5.6, if ρ(f, g) < δ, then d(f, g) < ε,
which is what we want.
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Finally, suppose G is open with respect to the topology generated by
ρ. For each f ∈ G, let rf be chosen so that Bρ(f, rf ) ⊂ G. Hence
G = ∪f∈GBρ(f, rf ). Let sf be chosen so that Bd(f, sf ) ⊂ Bρ(f, rf ). Then
∪f∈GBd(f, sf ) ⊂ G, and in fact the sets are equal because if f ∈ G, then
f ∈ Bd(f, sf ). Since G can be written as the union of balls which are open
with respect to d, then G is open with respect to d. The same argument with
d and ρ interchanged shows that a set that is open with respect to d is open
with respect to ρ.

5.5 Compactness and completeness

We now show completeness for (D, d).

Theorem 5.8 The space D with the metric d is complete.

Proof. Let fn be a Cauchy sequence with respect to the metric d. If
we can find a subsequence nj such that fnj converges, say, to f , then it
is standard that the whole sequence converges to f . Choose nj such that
d(fnj , fnj+1

) < 2−j. For each j there exists λj such that

sup
t
|fnj(t)− fnj+1

(λj(t))| ≤ 2−j, ‖λj‖ ≤ 2−j.

As in (5.4) and (5.5),

|λj(t)− t| ≤ 2−j+1.

Then

sup
t
|λn+m+1 ◦ λm+n ◦ · · · ◦ λn(t)− λn+m ◦ · · · ◦ λn(t)|

= sup
s
|λn+m+1(s)− s|

≤ 2−(n+m)

for each n. Hence for each n, the sequence λm+n ◦ · · · ◦ λn (indexed by m) is
a Cauchy sequence of functions on [0, 1] with respect to the supremum norm
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on [0, 1]. Let νn be the limit. Clearly νn(0) = 0, νn(1) = 1, νn is continuous,
and nondecreasing. We also have∣∣∣ log

λn+m ◦ · · · ◦ λn(t)− λn+m ◦ · · · ◦ λn(s)

t− s

∣∣∣
≤ ‖λn+m ◦ · · · ◦ λn‖
≤ ‖λn+m‖+ · · ·+ ‖λn‖

≤ 1

2n−1
.

If we then let m→∞, we obtain∣∣∣ log
νn(t)− νn(s)

t− s

∣∣∣ ≤ 1

2n−1
,

which implies νn ∈ Λ with ‖νn‖ ≤ 21−n.

We see that νn = νn+1 ◦ λn. Consequently

sup
t
|fnj(ν−1

j (t))− fnj+1
(ν−1
j+1(t))| = sup

s
|fnj(s)− fnj+1

(λj(s))| ≤ 2−j.

Therefore fnj ◦ ν−1
j is a Cauchy sequence on [0, 1] with respect to the supre-

mum norm. Let f be the limit. Since

sup
t
|fnj(ν−1

j (t))− f(t)| → 0

and ‖νj‖ → 0 as j →∞, then d(fnj , f)→ 0.

We turn to compactness.

Theorem 5.9 A set A has compact closure in D[0, 1] if

sup
f∈A

sup
t
|f(t)| <∞

and

lim
δ→0

sup
f∈A

ξf (δ) = 0.
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The converse of this theorem is also true, but we won’t need this.

Proof. A complete and totally bounded set in a metric space is compact,
and D[0, 1] is a complete metric space. Hence it suffices to show that A is
totally bounded: for each ε > 0 there exist finitely many balls of radius ε
that cover A.

Let η > 0 and choose k large such that 1/k < η and ξf (1/k) < η for each
f ∈ A. Let M = supf∈A supt |f(t)| and let H = {−M + j/k : j ≤ 2kM}, so
that H is an η-net for [−M,M ]. Let B be the set of functions f ∈ D[0, 1]
that are constant on each interval [(i− 1)/k, i/k) and that take values only
in the set H. In particular, f(1) ∈ H.

We first prove that B is a 2η-net for A with respect to ρ. If f ∈ A, there
exist t0, . . . , tn such that t0 = 0, tn = 1, ti − ti−1 > 1/k for each i, and
θf [ti−1, ti) < η for each i. Note we must have n ≤ k. For each i choose
integers ji such that ji/k ≤ ti < (ji + 1)/k. The ji are distinct since the ti
are at least 1/k apart. Define λ so that λ(ji/k) = ti and λ is linear on each
interval [ji/k, ji+1/k]. Choose g ∈ B such that |g(m/k) − f(λ(m/k))| < η
for each m ≤ k. Observe that each [m/k, (m+ 1)/k) lies inside some interval
of the form [ji/k, ji+1/k). Since λ is increasing, [λ(m/k), λ((m + 1)/k)) is
contained in [λ(ji/k), λ(ji+1/k)) = [ti, ti+1). The function f does not vary
more than η over each interval [ti, ti+1), so f(λ(t)) does not vary more than
η over each interval [m/k, (m + 1)/k). g is constant on each such interval,
and hence

sup
t
|g(t)− f(λ(t))| < 2η.

We have

|λ(ji/k)− ji/k| = |ti − ji/k| < 1/k < η

for each i. By the piecewise linearity of λ, supt |λ(t)− t| < η. Thus ρ(f, g) <
2η. We have proved that given f ∈ A, there exists g ∈ B such that ρ(f, g) <
2η, or B is a 2η-net for A with respect to ρ.

Now let ε > 0 and choose δ > 0 small so that 4δ + ξf (δ) < ε for each
f ∈ A. Set η = δ2/4. Choose B as above to be a 2η-net for A with respect
to ρ. By Lemma 5.6, if ρ(f, g) < 2η < δ2, then d(f, g) ≤ 4δ + ξf (δ) < ε.
Therefore B is an ε-net for A with respect to d.

The following corollary is proved exactly similarly to the continuous case.
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Corollary 5.10 Suppose Xn are processes whose paths are right continuous
with left limits. Suppose for each ε and η there exists n0, R, and δ such that

P(ξXn(δ) ≥ ε) ≤ η (5.6)

and
P( sup

t∈[0,1]

|Xn(t)| ≥ R) ≤ η. (5.7)

Then the Xn are tight with respect to the topology of D[0, 1].

Proof. Since each Xi is in D[0, 1], then for each i, P(ξXi(δ) ≥ ε) → 0 as
δ → 0 by dominated convergence. Hence, given ε and η we can, by taking δ
smaller if necessary, assume that (5.6) holds for all n.

Choose εm = ηm = 2−m and consider the δm and Am so that

sup
n

P(ξXn(δm) ≥ 2−m) ≤ 2−m

and
sup
n

P(sup
t
|Xn(t)| ≥ Am) ≤ 2−m.

Let

Km0 = {f ∈ D[0, 1] : ξf (δm) ≤ 2−m for all m ≥ m0,

sup
t
|f(t)| ≤ Am0}.

Each Km0 is a compact subset of D[0, 1]. We have

P(Xn /∈ Km0) ≤ P(sup
t
|Xn(t)| ≥ Am0) +

∞∑
m=m0

P(ξXn(δm) ≥ εm)

≤ 2−m0 +
∞∑

m=m0

2−m = 3 · 2−m0 .

This proves tightness.

We show that if fn → f with respect to d and f ∈ C[0, 1], the convergence
is in fact uniform.
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Proposition 5.11 Suppose fn → f in the topology of D[0, 1] with respect to
d and f ∈ C[0, 1]. Then supt∈[0,1] |fn(t)− f(t)| → 0.

Proof. Let ε > 0. Since f is uniformly continuous on [0, 1], there exists δ
such that |f(t) − f(s)| < ε/2 if |t − s| < δ. For n sufficiently large there
exists λn ∈ Λ such that supt |fn(t)− f(λn(t))| < ε/2 and supt |λn(t)− t| < δ.
Therefore |f(λn(t))− f(t)| < ε/2, and so |fn(t)− f(t)| < ε.

5.6 The Aldous criterion

A very useful criterion for tightness is the following one due to Aldous.

Theorem 5.12 Let {Xn} be a sequence in D[0, 1]. Suppose

lim
R→∞

sup
n

P(|Xn(t)| ≥ R) = 0 (5.8)

for each t ∈ [0, 1] and that whenever τn are stopping times for Xn and δn → 0
are reals,

|Xn(τn + δn)−Xn(τn)| (5.9)

converges to 0 in probability as n→∞.

Proof. We will set Xn(t) = Xn(1) for t ∈ [1, 2] to simplify notation. The
proof of this theorem comprises four steps.

Step 1. We claim that (5.9) implies the following: given ε there exist n0 and
δ such that

P(|Xn(τn + s)−Xn(τn)| ≥ ε) ≤ ε (5.10)

for each n ≥ n0, s ≤ 2δ, and τn a stopping time for Xn. For if not, we choose
an increasing subsequence nk, stopping times τnk , and snk ≤ 1/k for which
(5.10) does not hold. Taking δnk = snk gives a contradiction to (5.9).

Step 2. Let ε > 0, fix n ≥ n0, and let T ≤ U ≤ 1 be two stopping times for
Xn. We will prove

P(U ≤ T + δ, |Xn(U)−Xn(T )| ≥ 2ε) ≤ 16ε. (5.11)
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To prove this, we start by letting λ be Lebesgue measure. If

AT = {(ω, s) ∈ Ω× [0, 2δ] : |Xn(T + s)−Xn(T )| ≥ ε},

then for each s ≤ 2δ we have P(ω : (ω, s) ∈ AT ) ≤ ε by (5.10) with τn
replaced by T . Writing P× λ for the product measure, we then have

P× λ(AT ) ≤ 2δε. (5.12)

Set BT (ω) = {s : (ω, s) ∈ AT} and CT = {ω : λ(BT (ω)) ≥ 1
4
δ}. From

(5.12) and the Fubini theorem,∫
λ(BT (ω))P(dω) ≤ 2δε,

so
P(CT ) ≤ 8ε.

We similarly define BU and CU , and obtain P(CT ∪ CU) ≤ 16ε.

If ω /∈ CT ∪ CU , then λ(BT (ω)) ≤ 1
4
δ and λ(BU(ω)) ≤ 1

4
δ. Suppose

U ≤ T + δ. Then

λ{t ∈ [T, T + 2δ] : |Xn(t)−Xn(T )| ≥ ε} ≤ 1
4
δ,

and
λ{t ∈ [U,U + δ] : |Xn(t)−Xn(U)| ≥ ε} ≤ 1

4
δ.

Hence there exists t ∈ [T, T+2δ]∩[U,U+δ] such that |Xn(t)−Xn(T )| < ε and
|Xn(t)−Xn(U)| < ε; this implies |Xn(U)−Xn(T )| < 2ε, which proves (5.11).

Step 3. We obtain a bound on ξXn . Let Tn0 = 0 and

Tn,i+1 = inf{t > Tni : |Xn(t)−Xn(Tni)| ≥ 2ε} ∧ 2.

Note we have |Xn(Tn,i+1) −Xn(Tni)| ≥ 2ε if Tni < 2. We choose n0, δ as in
Step 1. By Step 2 with T = Tni and U = Tn,i+1,

P(Tn,i+1 − Tni < δ, Tni < 2) ≤ 16ε. (5.13)

Let K = [2/δ] + 1 and apply (5.10) with ε replaced by ε/K to see that there
exist n1 ≥ n0 and ζ ≤ δ ∧ ε such that if n ≥ n1, s ≤ 2ζ, and τn is a stopping
time, then

P(|Xn(τn + s)−Xn(τn)| > ε/K) ≤ ε/K. (5.14)
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By (5.11) with T = Tni and U = Tn,i+1 and δ replaced by ζ,

P(Tn,i+1 ≤ Tni + ζ) ≤ 16ε/K (5.15)

for each i and hence

P(∃i ≤ K : Tn,i+1 ≤ Tni + ζ) ≤ 16ε. (5.16)

We have

E [Tni − Tn,i−1;TnK < 1] ≥ δP(Tni − Tn,i−1 ≥ δ, TnK < 1)

≥ δ[P(TnK < 1)− P(Tni − Tn,i−1 < δ, TnK < 1)]

≥ δ[P(TnK < 1)− 16ε],

where we used (5.13) in the last step. Summing over i from 1 to K,

P(TnK < 1) ≥ E [TnK ;TnK < 1] =
K∑
i=1

E [Tni − Tn,i−1;TnK < 1]

≥ Kδ[P(TnK < 1)− 16ε] ≥ 2[P(TnK < 1)− 16ε],

or P(TnK < 1) ≤ 32ε. Hence except for an event of probability at most 32ε,
we have ξXn(ζ) ≤ 4ε.

Step 4. The last step is to obtain a bound on supt |Xn(t)|. Let ε > 0 and
choose δ and n0 as in Step 1. Define

DRn = {(ω, s) ∈ Ω× [0, 1] : |Xn(s)(ω)| > R}

for R > 0. The measurability of DRn with respect to the product σ-field
F ×B[0, 1] where B[0, 1] is the Borel σ-field on [0, 1] follows by the fact that
Xn is right continuous with left limits. Let

G(R, s) = sup
n

P(|Xn(s)| > R).

By (5.8), G(R, s)→ 0 as R→∞ for each s. Pick R large so that

λ({s : G(R, s) > εδ}) < εδ.

Then ∫
1DRn(ω, s)P(dω) = P(|Xn(s)| > R) ≤

{
1, G(r, s) > εδ,

εδ, otherwise.
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Integrating over s ∈ [0, 1],

P× λ(DRn) < 2εδ.

If ERn(ω) = {s : (ω, s) ∈ DRn} and FRn = {ω : λ(ERn) > δ/4}, we have

1
4
δP(FRn) =

∫
FRn

1
4
δ P(dω) ≤

∫ ∫ 1

0

1DRn(ω, s)λ(ds)P(dω) ≤ 2εδ,

so P(FRn) ≤ 8ε.

Define T = inf{t : |Xn(t)| ≥ R+ 2ε} ∧ 2 and define AT , BT , and CT as in
Step 2. We have

P(CT ∪ FRn) ≤ 16ε.

If ω /∈ CT ∪ FRn and T < 2, then λ(ERn(ω)) ≤ δ/4. Hence there exists
t ∈ [T, T + 2δ] such that |Xn(t)| ≤ R and |Xn(t) − Xn(T )| ≤ ε. Therefore
|Xn(T )| ≤ R+ ε, which contradicts the definition of T . We conclude that T
must equal 2 on the complement of CT ∪ FRn, or in other words, except for
an event of probability at most 16ε, we have supt |Xn(t)| ≤ R+2ε, provided,
of course, that n ≥ n0.

An application of Corollary 5.10 completes the proof.
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Chapter 6

Markov processes

6.1 Introduction

It is not uncommon for a Markov process to be defined as a sextuple (Ω,F ,
Ft, Xt, θt,Px), and for additional notation (e.g., ζ,∆,S, Pt, Rλ, etc.) to be
introduced rather rapidly. This can be intimidating for the beginner. We
will explain this notation in as gentle a manner as possible. We will consider
a Markov process to be a pair (Xt,Px) (rather than a sextuple), where Xt is
a single stochastic process and {Px} is a family of probability measures, one
probability measure Px corresponding to each element x of the state space.

The idea that a Markov process consists of one process and many prob-
abilities is one that takes some getting used to. To explain this, let us first
look at an example. Suppose X1, X2, . . . is a Markov chain with station-
ary transition probabilities with 5 states: 1, 2, . . . , 5. Everything we want to
know about X can be determined if we know p(i, j) = P(X1 = j | X0 = i)
for each i and j and µ(i) = P(X0 = i) for each i. We sometimes think
of having a different Markov chain for every choice of starting distribution
µ = (µ(1), . . . , µ(5)). But instead let us define a new probability space by
taking Ω′ to be the collection of all sequences ω = (ω0, ω1, . . .) such that each
ωn takes one of the values 1, . . . , 5. Define Xn(ω) = ωn. Define Fn to be the
σ-field generated by X0, . . . , Xn; this is the same as the σ-field generated by
sets of the form {ω : ω0 = a0, . . . , ωn = an}, where a0, . . . , an ∈ {1, 2, . . . , 5}.
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For each x = 1, 2, . . . , 5, define a probability measure Px on Ω′ by

Px(X0 = x0,X1 = x1, . . . Xn = xn) (6.1)

= 1{x}(x0)p(x0, x1) · · · p(xn−1, xn).

We have 5 different probability measures, one for each of x = 1, 2, . . . , 5,
and we can start with an arbitrary probability distribution µ if we define
Pµ(A) =

∑5
i=1 Pi(A)µ(i). We have lost no information by this redefinition,

and it turns out this works much better when doing technical details.

The value of X0(ω) = ω0 can be any of 1, 2, . . . , 5; the notion of starting at
x is captured by Px, not by X0. The probability measure Px is concentrated
on those ω’s for which ω0 = x and Px gives no mass to any other ω.

Let us now look at a Lévy process, and see how this framework plays out
there. Let P be a probability measure and let Zt be a Lévy process with
respect to P started at 0. Then Zx

t = x + Zt is a Lévy process started at x.
Let Ω′ be the set of right continuous left limit functions from [0,∞) to R,
so that each element ω in Ω′ is a right continuous left limit function. (We
do not require that ω(0) = 0 or that ω(0) take any particular value of x.)
Define

Xt(ω) = ω(t). (6.2)

This will be our process. Let F be the σ-field on Ω′, the right continuous
left limit functions, generated by the cylindrical subsets. Now define Px to
be the law of Zx. This means that Px is the probability measure on (Ω′,F)
defined by

Px(X ∈ A) = P(Zx ∈ A), x ∈ R, A ∈ F . (6.3)

The probability measure Px is determined by the fact that if n ≥ 1, t1 ≤
· · · ≤ tn, and B1, . . . , Bn are Borel subsets of R, then

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P(Zx
t1
∈ B1, . . . , Z

x
tn ∈ Bn).

6.2 Definition of a Markov process

We want to allow our Markov processes to take values in spaces other than
the Euclidean ones. For now, we take our state space S to be a separable
metric space, furnished with the Borel σ-field. For the first time around, just
think of R in place of S.
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To define a Markov process, we start with a measurable space (Ω,F) and
we suppose we have a filtration {Ft} (not necessarily satisfying the usual
conditions).

Definition 6.1 A Markov process (Xt,Px) is a stochastic process

X : [0,∞)× Ω→ S

and a family of probability measures {Px : x ∈ S} on (Ω,F) satisfying the
following.

(1) For each t, Xt is Ft measurable.

(2) For each t and each Borel subset A of S, the map x→ Px(Xt ∈ A) is
Borel measurable.

(3) For each s, t ≥ 0, each Borel subset A of S, and each x ∈ S, we have

Px(Xs+t ∈ A | Fs) = PXs(Xt ∈ A), Px − a.s. (6.4)

Some explanation is definitely in order. Let

ϕ(x) = Px(Xt ∈ A), (6.5)

so that ϕ is a function mapping S to R. Part of the definition of filtration
is that each Ft ⊂ F . Since we are requiring Xt to be Ft measurable, that
means that (Xt ∈ A) is in F and it makes sense to talk about Px(Xt ∈ A).
Definition 6.1(2) says that the function ϕ is Borel measurable. This is a very
mild assumption, and will be satisfied in the examples we look at.

The expression PXs(Xt ∈ A) on the right hand side of (6.4) is a random
variable and its value at ω ∈ Ω is defined to be ϕ(Xs(ω)), with ϕ given
by (6.5). Note that the randomness in PXs(Xt ∈ A) is thus all due to the
Xs term and not the Xt term. Definition 6.1(3) can be rephrased as saying
that for each s, t, each A, and each x, there is a set Ns,t,x,A ⊂ Ω that is a
null set with respect to Px and for ω /∈ Ns,t,x,A, the conditional expectation
Px(Xs+t ∈ A | Fs) is equal to ϕ(Xs).

We have now explained all the terms in the sextuple (Ω,F ,Ft, Xt, θt,Px)
except for θt. These are called shift operators and are maps from Ω → Ω
such that Xs ◦ θt = Xs+t. We defer the precise meaning of the θt and the
rationale for them until Section 6.4, where they will appear in a natural way.
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In the remainder of the section and in Section 6.3 we define some of the
additional notation commonly used for Markov processes. The first one is
almost self-explanatory. We use E x for expectation with respect to Px. As
with PXs(Xt ∈ A), the notation EXsf(Xt), where f is bounded and Borel
measurable, is to be taken to mean ψ(Xs) with ψ(y) = E yf(Xt).

If we want to talk about our Markov process started with distribution µ,
we define

Pµ(B) =

∫
Px(B)µ(dx),

and similarly for E µ; here µ is a probability on S.

6.3 Transition probabilities

If B is the Borel σ-field on a metric space S, a kernel Q(x,A) on S is a map
from S × B → R satisfying the following.

(1) For each x ∈ S, Q(x, ·) is a measure on (S,B).

(2) For each A ∈ B, the function x→ Q(x,A) is Borel measurable.

The definition of Markov transition probabilities or simply transition prob-
abilities is the following.

Definition 6.2 A collection of kernels {Pt(x,A); t ≥ 0} are Markov transi-
tion probabilities for a Markov process (Xt,Px) if

(1) Pt(x,S) = 1 for each t ≥ 0 and each x ∈ S.

(2) For each x ∈ S, each Borel subset A of S, and each s, t ≥ 0,

Pt+s(x,A) =

∫
S
Pt(y, A)Ps(x, dy). (6.6)

(3) For each x ∈ S, each Borel subset A of S, and each t ≥ 0,

Pt(x,A) = Px(Xt ∈ A). (6.7)

Definition 6.2(3) can be rephrased as saying that for each x, the measures
Pt(x, dy) and Px(Xt ∈ dy) are the same. We define

Ptf(x) =

∫
f(y)Pt(x, dy) (6.8)
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when f : S → R is Borel measurable and either bounded or non-negative.

The equations (6.6) are known as the Chapman-Kolmogorov equations.
They can be rephrased in terms of equality of measures: for each x

Ps+t(x, dz) =

∫
y∈S

Pt(y, dz)Ps(x, dy). (6.9)

Multiplying (6.9) by a bounded Borel measurable function f(z) and integrat-
ing gives

Ps+tf(x) =

∫
Ptf(y)Ps(x, dy). (6.10)

The right hand side is the same as Ps(Ptf)(x), so we have

Ps+tf(x) = PsPtf(x), (6.11)

i.e., the functions Ps+tf and PsPtf are the same. The equation (6.11) is
known as the semigroup property.

Pt is a linear operator on the space of bounded Borel measurable functions
on S. We can then rephrase (6.11) simply as

Ps+t = PsPt. (6.12)

Operators satisfying (6.12) are called a semigroup, and are much studied in
functional analysis.

One more observation about semigroups: if we take expectations in (6.4),
we obtain

Px(Xs+t ∈ A) = E x
[
PXs(Xt ∈ A)

]
.

The left hand side is Ps+t1A(x) and the right hand side is

E x[Pt1A(Xs)] = PsPt1A(x),

and so (6.4) encodes the semigroup property.

The resolvent or λ-potential of a semigroup Pt is defined by

Rλf(x) =

∫ ∞
0

e−λtPtf(x) dt, λ ≥ 0, x ∈ S.
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This can be recognized as the Laplace transform of Pt. By the Fubini theo-
rem, we see that

Rλf(x) = E x

∫ ∞
0

e−λtf(Xt) dt.

Resolvents are useful because they are typically easier to work with than
semigroups.

When practitioners of stochastic calculus tire of a martingale, they ‘stop’
it. Markov process theorists are a harsher lot and they ‘kill’ their processes.
To be precise, attach an isolated point ∆ to S. Thus one looks at Ŝ = S ∪∆,
and the topology on Ŝ is the one generated by the open sets of S and {∆}. ∆

is called the cemetery point. All functions on S are extended to Ŝ by defining
them to be 0 at ∆. At some random time ζ the Markov process is killed,
which means that Xt = ∆ for all t ≥ ζ. The time ζ is called the lifetime of
the Markov process.

6.4 The canonical process and shift operators

Suppose we have a Markov process (Xt,Px) where Ft = σ(Xs; s ≤ t). Sup-
pose that Xt has right continuous left limit paths. For this to even make
sense, we need the set {t→ Xt is not right continuous left limit} to be in F ,

and then we require this event to be Px-null for each x. Define Ω̃ to be the
set of right continuous left limit functions on [0,∞). If ω̃ ∈ Ω̃, set X̃t = ω̃(t).

Define F̃t = σ(X̃s; s ≤ t) and F̃∞ = ∨t≥0F̃t. Finally define P̃x on (Ω̃, F̃∞) by

P̃x(X̃ ∈ ·) = Px(X ∈ ·). Thus P̃x is specified uniquely by

P̃x(X̃t1 ∈ A1, . . . , X̃tn ∈ An) = Px(Xt1 ∈ A1, . . . , Xtn ∈ An)

for n ≥ 1, A1, . . . , An Borel subsets of S, and t1 < · · · < tn. Clearly there is
so far no loss (nor gain) by looking at the Markov process (X̃t, P̃x), which is
called the canonical process.

Let us now suppose we are working with the canonical process, and we
drop the tildes everywhere. We define the shift operators θt : Ω → Ω as
follows. θt(ω) will be an element of Ω and therefore is a continuous function
from [0,∞) to S. Define

θt(ω)(s) = ω(t+ s).
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Then

Xs ◦ θt(ω) = Xs(θt(ω)) = θt(ω)(s) = ω(t+ s) = Xt+s(ω).

The shift operator θt takes the path of X and chops off and discards the part
of the path before time t.

We will use expressions like f(Xs) ◦ θt. If we apply this to ω ∈ Ω, then

(f(Xs) ◦ θt)(ω) = f(Xs(θt(ω))) = f(Xs+t(ω)),

or f(Xs) ◦ θt = f(Xs+t).

Even if we are not in this canonical setup, from now on we will suppose
there exist shift operators mapping Ω into itself so that

Xs ◦ θt = Xs+t.

6.5 Enlarging the filtration

Throughout the remainder of this chapter we assume that X has paths that
are right continuous with left limits. To be more precise, if

N = {ω : the function t→ Xt(ω) is not right continuous with left limits},

then we assume N ∈ F and N is Px-null for every x ∈ S.

Let us first introduce some notation. Define

F00
t = σ(Xs; s ≤ t), t ≥ 0. (6.13)

This is the smallest σ-field with respect to which each Xs is measurable for
s ≤ t. We let F0

t be the completion of F00
t , but we need to be careful what

we mean by completion here, because we have more than one probability
measure present. Let N be the collection of sets that are Px-null for every
x ∈ S. Thus N ∈ N if (Px)∗(N) = 0 for each x ∈ S, where (Px)∗ is the outer
probability corresponding to Px. The outer probability (Px)∗ is defined by

(Px)∗(S) = inf{Px(B) : A ⊂ B,B ∈ F}.

Let
F0
t = σ(F00

t ∪N ). (6.14)
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Finally, let
Ft = F0

t+ = ∩ε>0F0
t+ε. (6.15)

We call {Ft} the minimal augmented filtration generated by X. The rea-
son for worrying about which filtrations to use is that {F00

t } is too small to
include many interesting sets (such as those arising in the law of the iter-
ated logarithm, for example), while if the filtration is too large, the Markov
property will not hold for that filtration.

The filtration matters when defining a Markov process; see Definition
6.1(3).

We will make the following assumption.

Assumption 6.3 Suppose Ptf is continuous on S whenever f is bounded
and continuous on S.

Markov processes satisfying Assumption 6.3 are called Feller processes or
weak Feller processes. If Ptf is continuous whenever f is bounded and Borel
measurable, then the Markov process is said to be a strong Feller process.

One can show that under Assumption 6.3 we have

Px(Xs+t ∈ A | Fs) = PXs(Xt ∈ A), Px − a.s.

6.6 The Markov property

We start with the Markov property:

E x[f(Xs+t) | Fs] = EXs [f(Xt)], Px − a.s. (6.16)

Since f(Xs+t) = f(Xt) ◦ θs, if we write Y for the random variable f(Xt), we
have

E x[Y ◦ θs | Fs] = EXsY, Px − a.s. (6.17)

We wish to generalize this to other random variables Y .

Proposition 6.4 Let (Xt,Px) be a Markov process and suppose (6.16) holds.
Suppose Y =

∏n
i=1 fi(Xti−s), where the fi are bounded, Borel measurable, and

s ≤ t1 ≤ . . . ≤ tn. Then (6.17) holds.
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Proof. We will prove this by induction on n. The case n = 1 is (6.16), so
we suppose the equality holds for n and prove it for n+ 1.

Let V =
∏n+1

j=2 fj(Xtj−t1) and h(y) = E yV . By the induction hypothesis,

E x
[ n+1∏
j=1

fj(Xtj)|Fs
]

= E x
[
E x[V ◦ θt1|Ft1 ]f1(Xt1)|Fs

]
= E x

[
(EXt1V )f1(Xt1)|Fs

]
= E x[(hf1)(Xt1)|Fs].

By (6.16) this is EXs [(hf1)(Xt1−s)]. For any y,

E y[(hf1)(Xt1−s)] = E y[(EXt1−sV )f1(Xt1−s)]

= E y
[
E y[V ◦ θt1−s|Ft1−s]f1(Xt1−s)

]
= E y[(V ◦ θt1−s)f1(Xt1−s)].

If we replace V by its definition, replace y by Xs, and use the definition of
θt1−s, we get the desired equality for n+ 1 and hence the induction step.

We now come to the general version of the Markov property. As usual,
F∞ = ∨t≥0Ft. The expression Y ◦ θt for general Y may seem puzzling at
first.

Theorem 6.5 Let (Xt,Px) be a Markov process and suppose (6.16) holds.
Suppose Y is bounded and measurable with respect to F∞. Then

E x[Y ◦ θs | Fs] = EXsY, Px − a.s. (6.18)

The proof follows from the previous proposition by a monotone class ar-
gument.

6.7 Strong Markov property

Given a stopping time T , recall that the σ-field of events known up to time
T is defined to be

FT =
{
A ∈ F∞ : A ∩ (T ≤ t) ∈ Ft for all t > 0

}
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We define θT by θT (ω)(t) = ω(T (ω) + t). Thus, for example, Xt ◦ θT (ω) =
XT (ω)+t(ω) and XT (ω) = XT (ω)(ω).

Now we can state the strong Markov property.

Suppose (Xt,Px) is a Markov process with respect to {Ft}. The strong
Markov property is said to hold if whenever T is a finite stopping time and
Y is bounded and measurable with respect to F∞, then

E x[Y ◦ θT |FT ] = EXTY, Px − a.s.

Recall that we are restricting our attention to Markov processes whose
paths are right continuous with left limits. If we have a Markov process
(Xt,Px) whose paths are right continuous with left limits, which has shift
operators {θt}, and which satisfies the strong Markov property, whether or
not Assumption 6.3 holds, then we say that (Xt,Px) is a strong Markov
process. A strong Markov process is said to be quasi-left continuous if XTn →
XT , a.s., on {T < ∞} whenever Tn are stopping times increasing up to T .
Unlike in the definition of predictable stopping times, we are not requiring the
Tn to be strictly less than T . A Hunt process is a strong Markov process that
is quasi-left continuous. Quasi-left continuity does not imply left continuity;
consider the Poisson process.



Chapter 7

Stable-like processes

7.1 Martingale problems

We saw in the chapter on SDEs that if Xt is a Lévy process, then

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a martingale, where f ∈ C2
b , the C2 functions such that f, f ′, f ′′ are

bounded, and

Lf(x) =

∫
[f(x+ h)− f(x)− f ′(x)h1(|h|≤1)]m(dh).

There is something analogous for all Markov processes. Given a Markov
process (Xt,Px), we say L is the weak infinitesimal generator if

Ptf(x)− f(x)

t
→ Lf(x)

boundedly and pointwise as t→ 0 for all f in some domain. This is different
from the usual definition of infinitesimal generator in functional analysis, as
there the convergence has to be in norm.

Proposition 7.1 If f is in the domain of the weak infinitesimal generator,
then Mt = f(Xt)− f(X0)−

∫ t
0
Lf(Xs) ds is a martingale.

95
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Proof. Note
Ps+hf(x)− Psf(x)

h
= Ps

(Phf − f
h

)
(x).

By dominated convergence, the right hand side converges to PsLf(x) as
h→ 0. Therefore the derivative of Psf(x) is PsLf(x).

Since PsLf is bounded,

Ptf(x)− f(x) =

∫ t

0

PsLf(x) ds,

or

E xf(Xt)− E xf(X0) = E x

∫ t

0

Lf(Xs) ds.

By the Markov property,

E x[Mt −Ms | Fs] = EXsf(Xt−s)− f(Xs)− EXs

∫ t−s

0

Lf(Xr) dr = 0.

This is what we want.

Here is some terminology. Let L be an operator, x0 a point in the state
space. We say a probability measure P is a solution to the martingale problem
for L started at x0 if
(1) P(X0 = x0) = 1 a.s.
(2) for all f in the domain of L, f(Xt)−f(X0)−

∫ t
0
Lf(Xs) ds is a martingale.

The martingale problem is well posed if there is a solution to the martin-
gale problem started at x0 for each x0 in the state space and the solution is
unique.

Here is a fact that we will not prove.

Theorem 7.2 Suppose the martingale problem is well posed. If Px is the
solution to the martingale problem started at x0, then (Xt,Px) is a strong
Markov process.
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7.2 Stable-like processes

The term stable-like process refers to several types of processes. Here is one
of them. We have seen that if we let Lf be defined by

Lf(x) =

∫
[f(x+ h)− f(x)− f ′(x)h1(|h|≤1)]m(dh)

for f ∈ C2
b , then P is a solution to the martingale problem for the Lévy

process started at 0. In particular, if we have a symmetric stable process of
index α, then m(dh) gets replaced by c/|h|1+α dh.

Let us suppose we have a strong Markov process such that for every x, Px
is the unique solution to the martingale problem for L started at x, where
we define

Lf(x) =

∫
[f(x+ h)− f(x)− f ′(x)h1(|h|≤1)]

A(x, h)

|h|1+α
dh,

for f ∈ C2
b . The way to think about this is that it is a lot like a stable

process, but its intensity varies from point to point, and the intensity also
varies with the size of the jump. We suppose there exist constants c1, c2 such
that

0 < c1 ≤ A(x, h) ≤ c2 <∞
for all x and h.

We also want to go to higher dimensions, so we replace |h|1+α by |h|d+α

and f ′(x)h by ∇f(x) · h. Now C2
b refers to C2 functions f such that f and

all its first and second partial derivatives are bounded.

7.3 Some properties

Let us begin by describing more carefully the processes we wish to consider.
A probability measure P on the space D[0,∞) is a solution to the martingale
problem for L started at x if Xt(ω) = ω(t) are the coordinate maps, Ft is
the σ-field generated by the cylindrical sets, and
(1) we have P(X0 = x) = 1, and
(2) for each f ∈ C2

b we have that

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (7.1)
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is a P-martingale, where

Lf(x) =

∫
Rd−{0}

[f(x+ h)− f(x)−∇f(x) · h1(|h|≤1)]n(x, h)dh.

The symmetry assumption we will impose on n will make the presence of
the ∇f term have no effect; moreover we could replace the 1(|h|≤1) term by
1(|h|≤M) with any M > 0 whatsoever.

We assume that (Px, Xt) is a strong Markov process with state space Rd

such that for each x the probability measure Px is a solution to the martingale
problem for L started at x.

Throughout this chapter we make the following assumption.

Assumption 7.3 (a) For all x and h we have n(x,−h) = n(x, h).
(b) There exist constants κ ∈ (0, 1) and α ∈ (0, 2) such that for all x and h
we have

κ

|h|d+α
≤ n(x, h) ≤ κ−1

|h|d+α
. (7.2)

The proof of the following scaling property is an easy change of variables
argument.

Proposition 7.4 Suppose (Px, Xt) is as above, a > 0, and Yt = aXa−αt.
Define Qx = Px/a. Then (Qx, Yt) is a strong Markov process. We have

Qx(Y0 = x) = 1 and if f ∈ C2, then f(Yt) − f(Y0) −
∫ t

0
L̃f(Ys)ds is a Qx-

martingale, where L̃f(x) =
∫

[f(x + h) − f(x) − ∇f(x) · h1(|h|≤1)]ñ(x, h)dh
and ñ satisfies (7.2) with the same values of κ and α.

Proof. Because (Px, Xt) is strong Markov and Yt is a constant multiple of a
time change of Xt, then (Qx, Yt) is strong Markov. That Qx(Y0 = 1) = 1 is
clear. Let

ñ(y, k) = a−(d+α)n(a−1y, a−1k)

and

L̃f(y) =

∫
Rd−{0}

[f(y + k)− f(y)−∇f(y) · k1(|k|≤1)]ñ(y, k)dk.
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Clearly ñ satisfies (2.3) with the same values of κ and α. Let f ∈ C2 and set
g(x) = f(ax). Then

g(Xa−αt)− g(X0)−
∫ a−αt

0

Lg(Xs)ds

is a martingale, hence so is

g(Xa−αt)− g(X0)−
∫ t

0

a−αLg(Xa−αs)ds.

Consequently

f(Yt)− f(Y0)−
∫ t

0

a−αLg(a−1Ys)ds

is also a martingale.

It remains to check that a−αLg(a−1y) = L̃f(y). This follows because,
omitting the gradient term for simplicity,

a−αLg(a−1y) = a−α
∫

[g(a−1y + k)− g(a−1y)]n(a−1y, k)dk

= a−α
∫

[f(y + ak)− f(y)]n(a−1y, k)dk

= ad
∫

[f(y + ak)− f(y)]ñ(y, ak)dk

=

∫
[f(y + h)− f(y)]ñ(y, h)dh

= L̃f(y).

We will also need the following fact, known as the Lévy system formula.

Proposition 7.5 Suppose A and B are Borel sets that are a positive distance
from each other. Then∑

s≤t

1(Xs−∈A,Xs∈B) −
∫ t

0

1A(Xs)

∫
B

n(Xs, u−Xs)du ds

is a Px-martingale for each x.
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Proof. Let f ∈ C2 with f = 0 on A and f = 1 on B. Let M f
t denote

the martingale in (7.1). Then
∫ t

0
1A(Xs−)dM f

t is also a martingale under Px,
since the stochastic integral with respect to a martingale is a martingale.
Since f(Xt)− f(X0) =

∑
s≤t[f(Xs)− f(Xs−)], this says that

∑
s≤t

[1A(Xs−)(f(Xs)− f(Xs−))]−
∫ t

0

1A(Xs−)Lf(Xs)ds

is a martingale. Since Xs− 6= Xs for only countably many values of s, then

∑
s≤t

[1A(Xs−)(f(Xs)− f(Xs−))]−
∫ t

0

1A(Xs)Lf(Xs)ds (7.3)

is also a martingale. Now if x ∈ A, then f(x) and ∇f(x) are both equal to
0, and so

Lf(x) =

∫
Rd−{0}

f(x+ h)n(x, h)dh =

∫
Rd−{0}

f(u)n(x, u− x)du .

Note n(x, h) is integrable over h in the complement of any neighborhood of
the origin. Because A and B are a positive distance from each other, the
sum on the left of (7.3) is actually a finite sum. With these facts we can pass
to a limit to see that

∑
s≤t

[1A(Xs−)(1B(Xs)− 1B(Xs−)]−
∫ t

0

1A(Xs)

∫
B

n(Xs, u−Xs)du ds

is a martingale, which is equivalent to what we wanted to prove.

By taking limits, it is not necessary to assume that A and B are a positive
distance apart, but only that they are disjoint.

We let B(x, r) denote the ball of radius r centered at x. We use |A| to
denote the Lebesgue measure of A. Set

τA = inf{t > 0 : Xt /∈ A}, TA = inf{t > 0 : Xt ∈ A}.
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7.4 Harnack inequality

We begin this section by proving a tightness result.

Proposition 7.6 There exists c1 depending only on κ and not x such that

Px(sup
s≤t
|Xs −X0| > 1) ≤ c1t.

Proof. Let f be a C2 function taking values in [0, 1] such that f(0) = 0 and
f(y) = 1 if |y| ≥ 1. Let fx(y) = f(y − x). By the Taylor expansion of fx,

|(fx(z + h)− fx(z)) + (fx(z − h)− fx(z))| ≤ c2|h|2. (7.4)

Since n is symmetric, this and and our assumptions imply

|Lfx(z)| ≤
∣∣∣∫
|h|≤1

[fx(z + h)− fx(z)]n(z, h)dh
∣∣∣

+
∣∣∣∫
|h|>1

[fx(z + h)− fx(z)]n(z, h)dh
∣∣∣

≤ c3

∫
|h|≤1

|h|2n(z, h)dh+ c4

∫
|h|>1

n(z, h)dh

≤ c5.

We now use (7.1) to write

E xfx(XτB(x,1)∧t)− fx(x) = E x

∫ τB(x,1)∧t

0

Lfx(Xs)ds ≤ c5t.

If Xt exits B(x, 1) before time t then fx(XτB(x,1)∧t) = 1, and so the left hand
side is greater than Px(τB(x,1) ≤ t).

Lemma 7.7 Let ε > 0. There exists c1 depending only on ε such that if
x ∈ Rd and r > 0, then

inf
z∈B(x,(1−ε)r)

E zτB(x,r) ≥ c1r
α.
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Proof. By scaling we may assume r = 1. By the previous proposition and
scaling, if z ∈ B(x, 1− ε)

Pz(τB(x,1) ≤ εαt) ≤ Pz( sup
s≤εαt

|Xs −X0| ≥ ε) ≤ c2t.

Thus

E zτB(x,1) ≥ εαtPz(τB(x,1) ≥ εαt) ≥ εαt(1− c2t) .

Taking t = 1/(2c2) yields a uniform lower bound.

Lemma 7.8 There exists c1 such that supz E zτB(x,r) ≤ c1r
α.

Proof. By scaling, we may suppose r = 1. Let S be the time of the first
jump larger than 2. We want to show there exists c2 ∈ (0, 1

2
) such that

Pz(S ≤ 1) > c2 for all z. For z such that Pz(S ≤ 1) ≥ 1
2
, there is nothing to

show. So suppose z is such that Pz(S ≤ 1) < 1
2
. By an argument similar to

that in Proposition 7.5,

∑
s≤t

1(|Xs−Xs−|>2) −
∫ t

0

∫
(|h|>2)

n(Xs, h)dh

is a martingale. Then by optional stopping and by the lower bounds on n

Pz(S ≤ 1) = E z
∑
s≤S∧1

1(|Xs−Xs−|>2)

= E z

∫ S∧1

0

∫
(|h|>2)

n(Xs, h)dh ds

≥ c3E z(S ∧ 1) ≥ c3Pz(S > 1) ≥ c3/2.

Letting c2 = (1 ∧ c3)/2, we have Pz(S ≤ 1) ≥ c2.

If there is a jump larger than 2 before time 1, then τB(x,1) ≤ 1. So

sup
z

Pz(τB(x,1) > 1) ≤ 1− c2.
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Let θt be the usual shift operator for Markov processes. By the Markov
property,

Pz(τB(x,1) > m+ 1) ≤ Pz(τB(x,1) > m, τB(x,1) ◦ θm > 1)

= E z
[
PXm(τB(x,1) > 1); τB(x,1) > m

]
≤ (1− c2)Pz(τB(x,1) > m).

By induction, Pz(τB(x,1) > m) ≤ (1 − c2)m, which implies that τB(x,1) has
moments of all orders.

Next we show Xt will hit sets of positive Lebesgue measure with positive
probability.

Proposition 7.9 Suppose A ⊂ B(x, 1). There exists c1 not depending on x
or A such that

Py(TA < τB(x,3)) ≥ c1|A|, y ∈ B(x, 2).

Proof. Fix y ∈ B(x, 2). Write τ for τB(x,3). If Xt is in A for some t
less than time τ with probability larger than 1/4, we are done, so assume
Py(TA < τ) ≤ 1/4. Using a previous proposition and scaling, choose t0
small enough so that the probability that τ occurs before time t0 is also less
than 1/4. Note that TA cannot equal τ because A ⊂ B(x, 1). For |h| ≤ 4,
n(Xs, h) is bounded below by our assumptions. Hence for Xs ∈ B(x, 3) and
u ∈ A ⊂ B(x, 1), we have |Xs − u| ≤ 4, and consequently n(Xs, u − Xs) is
bounded below. So

Py(TA < τ) ≥ E y
∑

s≤TA∧τ∧t0

1(Xs− 6=Xs,Xs∈A)

= E y

∫ TA∧τ∧t0

0

∫
A

n(Xs, u−Xs)du ds

≥ c2|A|E y(TA ∧ τ ∧ t0).

Now

E y(TA ∧ τ ∧ t0) ≥ E y(t0;TA ≥ τ ≥ t0)

= t0Py(TA ≥ τ ≥ t0)

≥ t0[1− Py(TA < τ)− Py(τ < t0)] ≥ t0/2.



104 CHAPTER 7. STABLE-LIKE PROCESSES

Combining this with the above,

Py(TA < τ) ≥ c2|A|t0/2.

Proposition 7.10 There exist c1 and c2 such that if x ∈ Rd, r > 0, z ∈
B(x, r), and H is a bounded nonnegative function supported in B(x, 2r)c,
then

E zH(XτB(x,r)
) ≤ c1

(
E zτB(x,r)

)∫ H(y)

|y − x|d+α
dy

and

E zH(XτB(x,r)
) ≥ c2

(
E zτB(x,r)

)∫ H(y)

|y − x|d+α
dy.

Proof. Note H(w) = 0 if w ∈ B(x, r) and H(XτB(x,r)
) > 0 only if there is a

jump from B(x, r) to B(x, 2r)c. By optional stopping, if B ⊂ B(x, 2r)c

E z1(Xt∧τ(B(x,r))∈B) = E z

∫ t∧τ(B(x,r))

0

∫
B

n(Xs, u−Xs)du ds

≤ E z

∫ t∧τ(B(x,r))

0

∫
B

c3

|u−Xs|d+α
du ds

≤ c4E z(t ∧ τB(x,r))

∫
B

dy

|y − x|d+α
.

Letting t → ∞, using monotone convergence on the right and dominated
convergence on the left, we have

E z1B(XτB(x,r)
) ≤ c4

(
E zτB(x,r)

)∫ 1B(y)

|y − x|d+α
dy.

Using linearity we have the above when 1B is replaced by a simple function;
approximating H by simple functions and taking limits, we have the first
inequality in the statement of the proposition.

The proof of the second inequality is exactly similar, using the lower bound
for n instead of the upper bound.
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We say a bounded function h : Rd → R is L-harmonic in a domain D if
h(Xt∧τD) is a Px-martingale for all x. It is easy to see that if h is C2 in D,
and Lh(x) = 0 for x ∈ D, then h will be L-harmonic.

Theorem 7.11 There exists c1 such that if h is nonnegative and bounded
on Rd and L-harmonic in B(x0, 16), then

h(x) ≤ c1h(y), x, y ∈ B(x0, 1).

Proof. By looking at a constant multiple of h, we may assume infB(x0,1) h =
1
2
. Choose z0 ∈ B(x0, 1) such that h(z0) ≤ 1. We want to show that h

is bounded above in B(x0, 1) by a constant not depending on h. We will
establish this by contradiction: if there exists a point x ∈ B(x0, 1) with
h(x) = K where K is too large, we can obtain a sequence of points in
B(x0, 2) on which h is unbounded.

Let ε < 1
3

be chosen so that |B(0, 1− ε)|/|B(0, 1)| ≥ 3
4
. Using our lemmas

and propositions, there exists c2 such that if x ∈ Rd, r > 0, and H is a
nonnegative function supported on B(x, 2r)c, then for y, z ∈ B(x, (1− ε)r),

E zH(Xτ(B(x,r))) ≤ c2E yH(Xτ(B(x,r))). (7.5)

By a proposition there exists c3 such that if A ⊂ B(x0, 4),

Py(TA < τB(x0,16)) ≥ c3|A|, y ∈ B(x0, 8). (7.6)

Also there exists c4 ≤ 1 such that if x ∈ Rd, r > 0, and C ⊂ B(x, r/3) with
|C|/|B(x, r/3)| ≥ 1

3
, then

Px(TC < τB(x,r)) ≥ c4. (7.7)

Let

η =
c4

3
, ζ =

1

3
∧ (c−1

2 η). (7.8)

Now suppose there exists x ∈ B(x0, 2) with h(x) = K for some K > 2.
Let r be chosen so that

|B(x, r/3)| = 2/(c3ζK). (7.9)



106 CHAPTER 7. STABLE-LIKE PROCESSES

Note this implies

r = c5K
−1/d. (7.10)

Let us write Br for B(x, r), τr for τB(x,r) and similarly B2r and τ2r. Let A be
a compact set contained in

A′ = {w ∈ B(x, r/3) : h(w) ≥ ζK}.

By (7.6) and optional stopping,

1 ≥ h(z0) ≥ E z0 [h(XTA∧τB(x0,16)
);TA < τB(x0,16)]

≥ ζKPz0(TA < τB(x0,16))

≥ c3ζK|A|,

hence
|A|

|B(x, r/3)|
≤ 1

c3ζK|B(x, r/3)|
≤ 1

2
.

This implies |A′|/|B(x, r/3)| ≤ 1
2
. Let C be a compact set contained in

B(x, r/3)− A′ such that

|C|
|B(x, r/3)|

≥ 1

3
. (7.11)

Let H = h1Bc2r . We claim

E x[h(Xτr);Xτr /∈ B2r] ≤ ηK

If not

E xH(Xτr) > ηK,

and by (7.5), for all y ∈ B(x, r/3),

h(y) ≥ E yh(Xτr) ≥ E y[h(Xτr);Xτr /∈ B2r]

≥ c−1
2 E xH(Xτr) ≥ c−1

2 ηK

≥ ζK,

contradicting (7.11) and the definition of A′, noting that |C|/|B(x, r/3)| ≥ 1
3

and so A′ is a proper subset of B(x, r/3).
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Let M = supB2r
h(z). We then have

K = h(x) = E x[h(XTC );TC < τr] + E x[h(Xτr); τr < TC , Xτr ∈ B2r]

+ E x[h(Xτr); τr < TC , Xτr /∈ B2r]

≤ ζKPx(TC < τr) +MPx(τr < TC) + ηK

= ζKPx(TC < τr) +M(1− Px(TC < τr)) + ηK,

or
M

K
≥ 1− η − ζPx(TC < τr)

1− Px(TC < τr)
.

Since ζ < 1
3
, then c4(1− ζ) > c4/3 = η, and then

Px(TC < τr)(1− ζ) ≥ c4(1− ζ) > η,

hence
Px(TC < τr) > η + ζPx(TC < τr).

This implies
1− Px(TC < τr) < 1− η − ζPx(TC < τr),

and therefore M/K > 1.

Using (7.7) and (7.8) there exists β > 0 such that M ≥ K(1 + 2β).
Therefore there exists x′ ∈ B(x, 2r) with h(x′) ≥ K(1 + β).

Now suppose there exists x1 ∈ B(x0, 1) with h(x1) = K1. Define r1

in terms of K1 analogously to (7.9). Using the above argument (with x1

replacing x and x2 replacing x′), there exists x2 ∈ B(x1, 2r1) with h(x2) =
K2 ≥ (1 + β)K1. We continue and obtain r2 and then x3, K3, r3, etc. Note
xi+1 ∈ B(xi, 2ri) and Ki ≥ (1 + β)i−1K1. In view of (7.10),

|xi+1 − xi| ≤ 2ri ≤ c/K
1/d
i ≤ c

K
1/d
1 (1 + β)i/d

,

which is summable, hence∑
i

|xi+1 − xi| ≤ c6K
−1/d
1 .

So if K1 > cd6, then we have a sequence x1, x2, . . . contained in B(x0, 2) with
h(xi) ≥ (1 + β)i−1K1 → ∞, a contradiction to h being bounded on Rd.
Therefore we cannot take K1 larger than c1 = cd6, and thus supB(x0,1) h(y) ≤
c1, which is what we wanted to prove.
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Corollary 7.12 Suppose D is a bounded connected domain and r > 0.
There exists c1 depending only on D and r such that if h is nonnegative
and bounded in Rd and L-harmonic in D, then h(x) ≤ c1h(y) if x, y ∈ D
and dist (x, ∂D) and dist (y, ∂D) are both greater than r.

Proof. We form a sequence x = y0, y1, y2, . . . , ym = y such that |yi+1− yi| <
(ai+1 ∧ ai)/32, where ai = dist (yi, ∂D) and each ai < r. By compactness we
can choose M depending only on r so that no more than M points yi are
needed. By scaling and and the previous theorem, h(yi) ≤ c2h(yi+1) with
c2 > 1. So

h(x) = h(y0) ≤ c2h(y1) ≤ · · · ≤ cm2 h(ym) = cm2 h(y) ≤ cM2 h(y).

7.5 Regularity

In this section we obtain some estimates on equicontinuity of resolvents.

Theorem 7.13 If h is bounded on Rd and L-harmonic in a ball B(x0, 2),
then h is Hölder continuous in B(x0, 1): there exist c1 and β > 0 such that

|h(x)− h(y)| ≤ c1‖h‖∞|x− y|β, x, y ∈ B(x0, 1).

Proof. By a proposition there exists c2 such that if x ∈ Rd, r > 0, and
A ⊂ B(x, r/3) with |A|/|B(x, r/3)| ≥ 1

3
, then

Px(TA < τB(x,r)) ≥ c2. (7.12)

By our propositions and lemmas with H = 1B(x,s)c , there exists c3 such that
if s ≥ 2r, then

Px(XτB(x,r)
/∈ B(x, s)) ≤ c3r

α/sα. (7.13)

Let

γ =
(

1− c2

4

)1/2

, ρ =
1

3
∧
(γ

2

)1/α

∧
(c2γ

2

8c3

)1/α

.
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By linearity and scaling it suffices to suppose 0 ≤ h ≤ M on Rd and h is
L-harmonic on B(x, 1). We will show

sup
B(x,ρk)

h− inf
B(x,ρk)

h ≤Mγk (7.14)

for all k.

We write Bi for B(x, ρi) and τi for τB(x,ρi). Let

ai = inf
Bi
h, bi = sup

Bi

h.

Suppose bi − ai ≤Mγi for all i ≤ k; we want to show

bk+1 − ak+1 ≤Mγk+1. (7.15)

We have ak ≤ h ≤ bk on Bk+1. Let

A′ = {z ∈ Bk+1 : h(z) ≤ (ak + bk)/2}.

We may suppose |A′|/|Bk+1| ≥ 1
2
, for if not we look at M − h instead of h.

Let A be a compact set contained in A′ with |A|/|Bk+1| ≥ 1
3
. Let ε > 0, pick

y ∈ Bk+1 with h(y) ≥ bk+1 − ε, and pick z ∈ Bk+1 with h(z) ≤ ak+1 + ε.

By optional stopping

h(y)− h(z)

= E y[h(XTA)− h(z);TA < τk]

+ E y[h(Xτk)− h(z); τk < TA, Xτk ∈ Bk−1]

+
∞∑
i=1

E y[h(Xτk)− h(z); τk < TA, Xτk ∈ Bk−i−1 −Bk−i].

The first term on the right is bounded by(ak + bk
2

− ak
)
Py(TA < τk).

The second term is bounded by

(bk−1 − ak−1)Py(τk < TA) = (bk−1 − ak−1)(1− Py(TA < τk)).
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Using (7.13) the infinite sum is bounded by
∞∑
i=1

(bk−i−1 − ak−i−1)Py(Xτk /∈ Bk−i)

≤
∞∑
i=1

c3Mγk−i−1(ρk)α/(ρk−i)α

= c3Mγk−1

∞∑
i=1

(ρα/γ)i

≤ 2c3Mγk−2ρα

≤ c2

4
Mγk.

Therefore

h(y)− h(z)

≤ 1

2
(bk − ak)Py(TA < τk) + (bk−1 − ak−1)(1− Py(TA < τk)) + c2Mγk/4

≤Mγk
(1

γ
−
(1

γ
− 1

2

)
Py(TA < τk)

)
+ c2Mγk/4

≤Mγk
(1

γ
−
(1

γ
− 1

2

)
c2

)
+ c2Mγk/4.

Since γ < 1 and

1− c2 +
3c2γ

4
≤ 1− c2

4
= γ2,

then
1

γ
−
(1

γ
− 1

2

)
c2 +

c2

4
≤ γ,

and so
h(y)− h(z) ≤Mγk+1.

We conclude that
bk+1 − ak+1 ≤Mγk+1 + 2ε.

Since ε is arbitrary, this proves (7.15) and hence (7.14).

If x, y ∈ B(x0, 1), let k be the smallest integer such that |x − y| < ρk.
Then log |x− y| ≥ (k + 1) log ρ, y ∈ B(x, ρk), and

|h(y)− h(x)| ≤Mγk = Mek log γ

≤ c4Melog |x−y|(log γ/ log ρ) = c4M |x− y|log γ/ log ρ.
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Define

Sλg(x) = E x

∫ ∞
0

e−λtg(Xt)dt.

Proposition 7.14 Suppose g is bounded and has compact support. There
exists c1 > 2 and β ∈ (0, 1) such that

|S0g(x)− S0g(y)| ≤ c1(‖S0g‖∞ + ‖g‖∞)(|x− y| ∧ 1)β.

Proof. Suppose |x − y| ≤ 1, for otherwise there is nothing to prove. We
write

S0g(x) = E x

∫ τB(x,r)

0

g(Xs)ds+ E xS0g(XτB(x,r)
)

and

S0g(y) = E y

∫ τB(x,r)

0

g(Xs)ds+ E yS0g(XτB(x,r)
).

Taking the difference,

|S0g(x)− S0g(y)| ≤ 2‖g‖∞ sup
z

E zτB(x,r) + c2‖S0g‖∞
( |x− y|

r

)β
,

using the previous theorem, scaling, and the fact that z → E zS0g(XτB(x,r)
)

is L-harmonic inside B(x, r). Taking r = |x − y|1/2 and using a lemma, we
obtain our result.

Theorem 7.15 Suppose g is bounded and λ > 0. There exists c1 > 0 and
β ∈ (0, 1) such that

|Sλg(x)− Sλg(y)| ≤ c1‖g‖∞(|x− y| ∧ 1)β.

Proof. Without loss of generality assume g ≥ 0. Temporarily assume
g has compact support. Let h = g − λSλg. Note S0h ≤ S0g + λSλS0g,
so h is bounded. We have Sλg = S0h by the resolvent equation. Since
‖Sλg‖∞ ≤ c2‖g‖∞, then ‖S0h‖∞ + ‖h‖∞ ≤ c3‖g‖∞. Our result now follows



112 CHAPTER 7. STABLE-LIKE PROCESSES

by a proposition if g has compact support. Taking limits allows us to remove
this restriction.

The solution to the integral equation

Lu(x)− λu(x) = −g(x)

is given by u(x) = Sλg(x). So our theorem provides a regularity result for
the solutions of such integral equations.



Chapter 8

Symmetric jump processes

8.1 Dirichlet forms

Let us now suppose S is a locally compact separable metric space together
with a σ-finite measure m defined on the Borel subsets of S. We want to
give a definition of Dirichlet form in this more general context. We suppose
there exists a dense subset D = D(E) of L2(S,m) and a non-negative bilinear
symmetric form E defined on D ×D, which means

E(f, g) = E(g, f), E(f + g, h) = E(f, h) + E(g, h)

E(af, g) = aE(f, g), E(f, f) ≥ 0

for f, g, h ∈ D, a ∈ R.

We will frequently write 〈f, g〉 for
∫
f(x)g(x)m(dx). For a > 0 define

Ea(f, f) = E(f, f) + a〈f, f〉.

We can define a norm on D using the inner product Ea: the norm of f equals
(Ea(f, f))1/2; we call this the norm induced by Ea. Since a〈f, f〉 ≤ Ea(f, f),
then

Ea(f, f) ≤ Eb(f, f) = Ea(f, f) + (b− a)〈f, f〉

≤
(

1 +
b− a
a

)
Ea(f, f)

113
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if a < b, so the norms induced by different a’s are all equivalent. We say E is
closed if D is complete with respect to the norm induced by Ea for some a.
Equivalently, E is closed if whenever un ∈ D satisfies E1(un−um, un−um)→ 0
as n,m → ∞, then there exists u ∈ D such that E(un − u, un − u) → 0 as
n→∞.

We say E is Markovian if whenever u ∈ D, then v = 0 ∨ (u ∧ 1) ∈ D and
E(v, v) ≤ E(u, u). (A slightly weaker definition of Markovian is sometimes
used.) A Dirichlet form is a non-negative bilinear symmetric form that is
closed and Markovian.

Absorbing Brownian motion on [0,∞) is a symmetric process. The corre-
sponding Dirichlet form is

E(f, f) = 1
2

∫ ∞
0

|f ′(x)|2 dx,

and the appropriate domain turns out to be the completion of the set of C1

functions with compact support contained in (0,∞) with respect to the norm
induced by E1. In particular, any function with compact support contained
in (0,∞) will be zero in a neighborhood of 0. In a domain D in higher
dimensions, the Dirichlet form for absorbing Brownian motion becomes

E(f, f) = 1
2

∫
|∇f(x)|2 dx, (8.1)

with the domain of E being the completion with respect to E1 of the C1

functions whose support is contained in the interior of D.

Reflecting Brownian motion is also a symmetric process. For a domain
D, the Dirichlet form is given by (8.1) and the domain D(E) of the form is
given by the completion with respect to the norm induced by E1 of the C1

functions on D with compact support, where D is the closure of D. One
might expect there to be some restriction on the normal derivative ∂f/∂n on
the boundary of D, but in fact there is no such restriction. To examine this
further, consider the case of D = (0,∞). If one takes the class of functions f
which are C1 with compact support and with f ′(0) = 0 and takes the closure
with respect to the norm induced by E1, one can show that one gets the same
class as D(E).

One nice consequence of the fact that one doesn’t need to impose a re-
striction on the normal derivative in the domain of E for reflecting Brownian
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motion is that this allows us to define reflecting Brownian motion in any
domain, even when the boundary is not smooth enough for the notion of
normal derivative to be defined.

8.2 Construction of the semigroup

We now want to construct the resolvent corresponding to a Dirichlet form.
We are going to arrange things so that

Ea(Raf, g) = 〈f, g〉 (8.2)

for all a > 0 and all f, g such that Raf, g ∈ D. Our Banach space B will be
L2(S,m). An operator T is symmetric if 〈Tf, g〉 = 〈f, Tg〉.

Recall the Hille-Yosida theorem says that if L is a densely defined un-
bounded operator such that Rλ = (λI − L)−1 exists for all real λ > 0 and
‖Rλ‖ ≤ 1/λ, then L is the infinitesimal generator of a strongly continu-
ous semigroup of contractions whose resolvents are Rλ. Strongly continuous
means that Ptf → f in norm as t → 0 for every f in the Banach space,
contraction means ‖Pt‖ ≤ 1, and saying Rλ is the resolvent means that
Rλf =

∫∞
0
e−λtPtf dt for all f .

An alternate phrasing is that if Rλ, λ > 0 is a collection of bounded oper-
ators such that the resolvent identity holds, that is, Ra −Rb = (b− a)RaRb,
we have ‖Rλ‖ ≤ 1/λ, and the range of Rλ is dense in the Banach space, then
there exists a strongly continuous semigroup of contractions whose resolvents
are Rλ.

Theorem 8.1 If E is a Dirichlet form, there exists a family of resolvent
operators {Rλ} such that
(1) the Rλ satisfy the resolvent equation,
(2) ‖λRλ‖ ≤ 1 for all λ > 0,
(3) λRλf → f as λ→∞,
(4) Ea(Raf, g) = 〈f, g〉 if a > 0, Raf, g ∈ D,
(5) Ra is a symmetric operator if a > 0,
(6) every function in the domain of the infinitesimal generator L is in Rλ(B),
where B is the Banach space,
(7) 〈Lf, g〉 = −E(f, g) if f is in the domain of L and g ∈ D(E).
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Proof. Fix f ∈ B and define a linear functional on B by I(g) = 〈f, g〉. This
functional is also a bounded linear functional on D with respect to the norm
induced by Ea, that is, there exists c such that |I(g)| ≤ cEa(g, g)1/2. This
follows because

|I(g)| =
∣∣∣ ∫ fg

∣∣∣ ≤ 〈f, f〉1/2〈g, g〉1/2 ≤ 〈f, f〉1/2( 1
a
Ea(g, g))1/2

by the Cauchy-Schwarz inequality. Since E is closed, D is a Hilbert space with
respect to the norm induced by Ea. By the Riesz representation theorem for
Hilbert spaces, there exists a unique element u ∈ D such that I(g) = Ea(u, g)
for all g ∈ D. We set Raf = u. In particular, (8.2) holds, and Raf ∈ D.

We show the resolvent equation holds. If g ∈ D,

Ea(Raf −Rbf, g) = Ea(Raf, g)− E(Rbf, g)− a〈Rbf, g〉
= 〈f, g〉 − E(Rbf, g)− b〈Rbf, g〉+ (b− a)〈Rbf, g〉
= 〈f, g〉 − Eb(Rbf, g) + (b− a)〈Rbf, g〉
= (b− a)〈Rbf, g〉
= Ea((b− a)RaRbf, g).

Since this holds for all g ∈ D and D is dense in B, then Raf − Rbf =
(b− a)RaRbf .

Next we show that ‖aRaf‖ ≤ ‖f‖, or equivalently,

〈aRaf, aRaf〉 ≤ 〈f, f〉. (8.3)

If 〈Raf,Raf〉 is zero, then (8.3) trivially holds, so suppose it is positive. We
have

a〈Raf,Raf〉 ≤ Ea(Raf,Raf) = 〈f,Raf〉 ≤ 〈f, f〉1/2〈Raf,Raf〉1/2

by (8.2) and the Cauchy-Schwarz inequality. If we now divide both sides by

〈Raf,Raf〉1/2 and then square both sides, we obtain (8.3).

We show that bRbf → f as b → ∞ when f ∈ B. If f ∈ D, then by the
Cauchy-Schwarz inequality and (8.3)

〈bRbf, f〉 ≤ 〈bRbf, bRbf〉1/2〈f, f〉1/2

≤ 〈f, f〉.
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Using this,

b〈bRbf − f, bRbf − f〉 ≤ Eb(bRbf − f, bRbf − f)

= b2Eb(Rbf,Rbf)− 2bEb(Rbf, f) + Eb(f, f)

= b2〈Rbf, f〉 − 2b〈f, f〉+ E(f, f) + b〈f, f〉
≤ E(f, f).

Now divide both sides by b to get ‖bRbf − f‖2 ≤ E(f, f)/b → 0 as b → ∞.
Since D is dense in B and ‖bRb‖ ≤ 1 for all b, we conclude bRbf → f for all
f ∈ B.

To see the symmetry, we have

〈f,Rag〉 = Ea(Raf,Rag) = Ea(Rag,Raf) = 〈g,Raf〉.

If f is in the domain of the infinitesimal generator, then h = Lf is in
the Banach space, and hence λf − h = (λ − L)f is in the Banach space B,
which implies h = Rλ(λf − h). Thus every function in the domain of the
infinitesimal generator is in Rλ(B).

If f = Rλh, then Lf = λRλh− h, and then

〈Lf, g〉 = λ〈Rλh, g〉 − 〈h, g〉.

We have
〈h, g〉 = Eλ(Rλh, g) = E(Rλh, g) + λ〈Rλh, g〉.

Solving,
E(f, g) = E(Rλh, g) = 〈h, g〉 − λ〈Rλh, g〉.

Theorem 8.2 If f ∈ B satisfies 0 ≤ f(x) ≤ 1, m-a.e., then for all a > 0

0 ≤ aRaf ≤ 1, m− a.e. (8.4)

Proof. Fix f ∈ B with 0 ≤ f ≤ 1, m-a.e., and let a > 0. Define a functional
ψ on D by

ψ(v) = E(v, v) + a
〈
v − f

a
, v − f

a

〉
.
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We claim

ψ(Raf) + Ea(Raf − v,Raf − v) = ψ(v), v ∈ D. (8.5)

To see this, start with the left hand side, which is equal to

E(Raf,Raf) + a
〈
Raf −

1

a
f,Raf −

1

a
f
〉

+ Ea(Raf − v,Raf − v)

= Ea(Raf,Raf)− 2〈Raf, f〉+
1

a
〈f, f〉+ Ea(Raf,Raf)

− 2Ea(Raf, v) + Ea(v, v)

=
1

a
〈f, f〉 − 2〈f, v〉+ E(v, v) + a〈v, v〉

= ψ(v).

If follows from (8.5) and the fact that Ea(g, g) is non-negative for any g ∈ D
that Raf is the function that minimizes ψ.

Set φ(x) = 0∨ (x∧ (1/a)) and let w = φ(Raf). Observe that |φ(t)− s| ≤
|t− s| for t ∈ R and s ∈ [0, 1/a], so∣∣∣w(x)− f(x)

a

∣∣∣ ≤ ∣∣∣Raf(x)− f(x)

a

∣∣∣,
and therefore 〈

w − f

a
, w − f

a

〉
≤
〈
Raf −

f

a
,Raf −

f

a

〉
. (8.6)

Since E is Markovian, then aw = 0 ∨ ((aRaf) ∧ 1), which leads to

E(w,w) ≤ 1

a2
E(aRaf, aRaf) = E(Raf,Raf). (8.7)

Adding (8.6) and (8.7), we conclude ψ(w) ≤ ψ(Raf). Since Raf is the
minimizer for ψ, then w = Raf , m-a.e. But 0 ≤ w ≤ 1/a, and hence aRaf
takes values in [0, 1], m-a.e.

Corollary 8.3 (1) If 0 ≤ f ≤ 1, m-a.e., then 0 ≤ Ptf ≤ 1, m-a.e.
(2) Pt is a symmetric operator.
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Proof. If 0 ≤ f ≤ 1, m-a.e., then 0 ≤ bRbf ≤ 1, m-a.e, by Theorem 8.1,
and iterating, 0 ≤ (bRb)

if ≤ 1, m-a.e., for every i. Using the proof of the
Hille-Yosida theorem,

Qb
tf(x) = e−bt

∞∑
i=0

(bt)i(bRb)
if(x)/i!,

which will be non-negative, m-a.e., and bounded by e−bt
∑∞

i=0(bt)i/i!, m- a.e.
Passing to the limit as b→∞, we see that Ptf takes values in [0, 1], m-a.e.

The proof of the symmetry of Pt is similar.

When it comes to using the semigroup Pt derived from a Dirichlet form
to construct a Markov process X, there is a difficulty that we did not have
before. Since Pt is constructed using an L2 procedure, Ptf is defined only
up to almost everywhere equivalence. Without some continuity properties
of Ptf for enough f ’s, we must neglect some null sets. If the only null sets
we could work with were sets of m-measure 0, we would be in trouble. For
example, when S is the plane and m is two-dimensional Lebesgue measure,
the x axis has measure zero, but a continuous process will (in general) hit the
x axis. Fortunately there is a notion of sets of capacity zero, which are null
sets that are smaller than sets of measure zero. It is possible to construct
a process X starting from all points x in S except for those in a set N of
capacity zero and to show that starting from any point not in N , the process
never hits N .

There is another difficulty when working with Dirichlet forms. In general,
one must look at S̃, a certain compactification of S, which is a compact
set containing S. Even when our state space is a domain in Rd, S̃ is not
necessarily equal to S, the Euclidean closure of S, and one must work with
S̃ instead of S. It can be shown that this problem will not occur if the
Dirichlet form is regular. Let CK be the set of continuous functions with
compact support. A Dirichlet form E is regular if D∩CK is dense in D with
respect to the norm induced by E1 and D ∩ CK also is dense in CK with
respect to the supremum norm.



120 CHAPTER 8. SYMMETRIC JUMP PROCESSES

8.3 Symmetric jump processes

We are going to define

E(f, g) =

∫
Rd

∫
Rd

[f(y)− f(x)] [g(y)− g(x)]

|x− y|d+α
A(x, y) dy dx,

where A is symmetric and bounded above and below by positive constants,
but first we need to specify the domain.

Define

ν(f) = ‖f‖2 +
(∫

Rd

∫
Rd

[f(y)− f(x)]2

|x− y|d+α
dy dBig)1/2.

Let us show that if f ∈ C2 with compact support, say in B(0,M) with
M ≥ 2, then ν(f) is finite. Let |A| be the Lebesgue measure of a set A.

Fix x and first suppose |x| ≥ 3M . The numerator of the second integral in
the definition of ν(f) is 0 unless y ∈ B(0,M), and in that case |x− y|d+α ≤
c|x|d+α. So for |x| ≥ 3M we can bound the inside integral by

c−1

∫
|y|≤M

|f(y)|
|x|d+α

dy ≤ c′‖f‖∞|B(0,M)||x|−d−α.

This is integrable over |x| ≥ 3M .

Now suppose |x| ≤ 3M . Since f ∈ C2,∫
Rd

|f(y)− f(x)|2

|x− y|d+α
dy ≤ ‖f ′‖2

∞

∫
|x−y|≤1

|x− y|2

|x− y|d+α
dy

+ 2‖f‖2
∞

∫
|x−y|>1

1

|x− y|d+α
dy,

which is bounded by a constant depending on f . So the integral over
B(0, 3M) is finite. Therefore ν(f) is finite.

We now let D be the completion of C2
K , the C2 functions with compact

support, with respect to the norm ν(f).

We suppose A(x, y) = A(y, x) for all x and y and

0 < c1 ≤ A(x, y) ≤ c2 <∞
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for constants c1, c2. That E is bilinear, symmetric, and E(f, f) ≥ 0 is obvious.
That E is closed follows easily because Eα(f, f) is comparable to ν(f).

It remains to show E is Markovian. If g = (f ∧ 1) ∨ 0, note that

|g(y)− g(x)| ≤ |f(y)− f(x)|.

It then follows easily that E(g, g) ≤ E(f, f).

We note that E is regular by the way the domain of E was constructed.

8.4 The Poincaré and Nash inequalities

Let Q = Qh = [−h/2, h/2]d. Define

fQ =
1

|Q|

∫
Q

f(y) dy.

Theorem 8.4 (Poincaré inequality) There exists a constant c such that∫
Q

|f(y)− fQ|2 dy ≤ chα
∫
Q

∫
Q

(f(y)− f(x))2

|x− y|d+α
dy dx.

Proof. Let’s first do the case h = 1. We write∫
Q

∫
Q

[f(y)− f(x)]2 dy dx =

∫
Q

∫
Q

[f(y)2 − 2f(x)f(y) + f(x)2] dy dx

= 2

∫
Q

f(x)2 dx− 2fQfQ = 2

∫
Q

(f − fQ)2.

Since |x− y|d+α ≥ c on Q×Q, the left hand side is less than or equal to

c

∫
Q

∫
Q

(f(y)− f(x))2

|x− y|d+α
dy dx.

The case of general h is done by a scaling argument (apply the above to
g(x) = f(x/h) and use a change of variables).
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Before proving the Nash inequality, observe that

|fQ| =
1

|Q|

∣∣∣ ∫
Q

f
∣∣∣ ≤ h−d

∫
Q

|f |.

We will also use the inequality that if all the ai ≥ 0, then∑
a2
i ≤

(∑
ai

)2

.

Theorem 8.5 (Nash inequality)

‖f‖2(1+α/d)
2 ≤ cE(f, f)‖f‖2α/d

1 .

Proof. Break Rd into cubes Q1, Q2, . . . whose union is Rd and whose interiors
are pairwise disjoint. Note

1

|Qi|

∫
Qi

(f(x)− fQi)2 =
1

|Qi|

∫
Qi

f(x)2 dx− (fQi)
2.

Then

‖f‖2
2 =

∫
f(x)2 dx =

∑
i

∫
Qi

f(x)2

=
∑

hd
1

|Qi|

∫
Qi

f(x)2 dx

=
∑

hd
1

|Qi|

∫
Qi

|f(x)− fQi |2 dx+
∑

hdf 2
Qi

≤
∑
i

hα
∫
Qi

∫
Qi

f(y)− f(x))2

|x− y|d+α
dy dx+ hd

(∑
|f |Qi

)2

≤ chαE(f, f) + h−d‖f‖2
1.

Now choose h so that the two terms on the last line are equal, namely,

h =
( ‖f‖2

1

E(f, f)

)1/(α+d)

,

and we obtain
‖f‖2

2 ≤ c‖f‖2α/(α+d)
1 E(f, f)d/(α+d).

Taking both sides to the power (α + d)/d gives the inequality.
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8.5 Upper bounds on the transition densities

Notice

|Ptf(x)| =
∣∣∣ ∫ f(y)Pt(x, dy)

∣∣∣ ≤ ∫ |f(y)|Pt(x, dy) = Pt|f |(x).

Since Pt is symmetric, we have

‖Ptf‖1 = 〈|Ptf |, 1〉 ≤ 〈Pt|f |, 1〉 = 〈|f |, Pt1〉 = 〈|f |, 1〉 = ‖f‖1.

Theorem 8.6 There exists a function p(t, x, y) such that

Ptf(x) =

∫
p(t, x, y)f(y) dy

(for almost every x) and such that p(t, x, y) ≤ ct−d/α.

Proof. We will show
‖Ptf‖2 ≤ ct−d/2α‖f‖1

for f in the domain of the infinitesimal generator. By taking limits, this holds
for all f ∈ L1 ∩ L2. Taking f = 1A where |A| = 0, we get that ‖Ptf‖2 = 0,
or Ptf = 0 a.e. So ∫

A

Pt(x, dy) = 0,

or Pt(x, dy) is absolutely continuous with respect to Lebesgue measure. Thus
p(t, x, y), the Radon-Nikodym derivative exists (for almost every x).

Also, if g ∈ L1,

|〈Ptf, g〉| = |〈f, Ptg〉| ≤ ‖f‖2‖Ptg‖2 ≤ ct−d/2α‖f‖2‖g‖1.

Taking the supremum over the set of g ∈ L1 ∩ L2 with ‖g‖1 ≤ 1, we obtain

‖Ptf‖∞ ≤ ct−d/2α‖f‖2.

Then

‖Ptf‖∞ = ‖Pt/2(Pt/2f)‖∞ ≤ ct−d/2α‖Pt/2f‖2 ≤ ct−d/α‖f‖1.
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Letting f = 1A, we have∫
A

p(t, x, y) dy ≤ ct−d/α|A|,

and the bound on p(t, x, y) follows.

Now let f ∈ C2
K . f is in the domain of the infinitesimal generator, so Ptf

is also. Suppose ‖f‖1 = 1, so that ‖Ptf‖1 ≤ 1. Let

E(t) =

∫
Ptf(x)2 dx.

Using the Nash inequality and the fact that E(f, f), which has an A(x, y)
term, is comparable to ∫ ∫

(f(y)− f(x))2

|x− y|d+α
dy dx,

we have

E ′(t) =

∫
2Ptf(x)

∂

∂t
Ptf(x) dx = 2

∫
Ptf(x)LPtf(x) dx

= −2E(Ptf, Ptf) ≤ −c
∫ ∫

(Ptf(y)− Ptf(x))2

|x− y|d+α
dy dx

≤ −2c‖Ptf‖2(1+α/d)
2 = −cE(t)1+α/d.

So
E ′(t)

E(t)1+α/d
≤ −c,

hence
−E(t)−α/d ≤ −E(t)−α/d + E(0)−α/d ≤ −ct,

and therefore
E(t) ≤ ct−d/α.

By linearity,
‖Ptf‖2

2 ≤ ct−d/α‖f‖2
1.


