The supremum of Brownian local times on Hölder curves, II

Richard F. Bass and Krzysztof Burdzy *

July 24, 2023

Abstract

Abstract: For $f : [0,1] \to \mathbb{R}$, we consider L_t^f , the local time of spacetime Brownian motion on the curve f. Let \mathcal{S}_{α} be the class of all functions whose Hölder norm of order α is less than or equal to 1. We show that the supremum of L_1^f over f in \mathcal{S}_{α} is finite if $\alpha > \frac{1}{2}$.

AMS subject classifications: 60J65, 60J55

1 Introduction

The main claim of [1] was that the supremum of Brownian local times over all α -Hölder curves is finite if $\alpha > 1/2$ (see Theorem 1.1 below for the precise statement). An error in the proof was pointed out to us by A. Vatamanelu; however we were able to establish the claim for $\alpha > 5/6$ in [2]. The purpose of this note is to prove the original claim from [1], that finiteness of the supremum indeed holds for all $\alpha \in (1/2, 1]$. We also showed in [1] that $\alpha = 1/2$ is the critical value; see Theorem 3.8 of that paper for the precise statement.

Let W_t be one-dimensional Brownian motion and let $f : [0,1] \to \mathbb{R}$ be a Hölder continuous function. There are a number of equivalent ways to define

^{*}Research of KB partially supported by Simons Foundation grant 928958.

 L_t^f , the local time of W_t along the curve f, one of which is as the limit in probability of

$$\frac{1}{2\varepsilon} \int_0^t \mathbf{1}_{(f(s)-\varepsilon,f(s)+\varepsilon)}(W_s) \, ds$$

as $\varepsilon \to 0$. See [1, Sect. 2] for a discussion of other ways of defining L_t^f . Let

$$\mathcal{S}_{\alpha} = \{ f : \sup_{0 \le t \le 1} |f(t)| \le 1, |f(s) - f(t)| \le |s - t|^{\alpha} \text{ if } s, t \le 1 \}.$$

Our main result in this paper is the following.

Theorem 1.1. For any $\alpha \in (1/2, 1]$, there exists \widetilde{L}_t^f such that

(i) for each $f \in S_{\alpha}$, we have $\widetilde{L}_t^f = L_t^f$ for all t, a.s.,

(ii) with probability one, $f \to \widetilde{L}_1^f$ is a continuous map on \mathcal{S}_{α} with respect to the supremum norm, and

(iii) with probability one, $\sup_{f\in\mathcal{S}_{\alpha}}\widetilde{L}_{1}^{f}<\infty$.

The interest in Theorem 1.1 has several sources. One is that the metric entropy of S_{α} is far too large for chaining arguments to work; nevertheless the supremum is finite a.s. Another is the work of Holden and Sheffield [3] on scaling limits of the Schelling model, where they used some of the techniques in [1] to analyze local times of random fields over Lipschitz surfaces.

In the interests of space we present only the changes needed to [1] to prove our result and refer to the original paper for the unchanged part of the proof.

2 The finiteness of the supremum

Let W_t be a Brownian motion. A key ingredient in our proof is Lemma 3.1 of [1]. The proof there is correct; the error in [1] was in how this lemma was applied further on.

We replace Propositions 3.2 and 3.3 in [1] by the following.

Consider an integer N > 0. For $0 \le \ell \le N, -N^{\alpha} - 1 \le m \le N^{\alpha}$, let $R_{\ell m}$ be the rectangle defined by

 $R_{\ell m} = [\ell/N, (\ell+1)/N] \times [m/N^{\alpha}, (m+1)/N^{\alpha}].$

Proposition 2.1. Let $\alpha \in (1/2, 1]$ and $\varepsilon \in (0, 1/16)$. There exist c_1, c_2 , and c_3 such that:

(i) there exists a set D_N with $\mathbb{P}(D_N) \leq c_1 \exp(-c_2 N^{\varepsilon/2})$;

(ii) if $\omega \notin D_N$ and $f \in S_{\alpha}$, then there are at most $c_3 N^{(1/2)+2\varepsilon}$ rectangles $R_{\ell m}$ in $[0,1] \times [-1,1]$ which contain both a point of the graph of f and a point of the graph of $W_t(\omega)$.

Proof. Let $M = \lfloor N^{\varepsilon} \rfloor$ and set

$$Q_{ik} = [i/M, (i+1)/M] \times [k/M^{1/2}, (k+1)/M^{1/2}]$$

for $0 \le i \le M$ and $-M^{1/2} - 1 \le k \le M^{1/2}$. Let $J = \lceil N/M \rceil$.

Let

$$I_{ikj} = \{ \exists t \in [i/M + (j-1)/N, i/M + j/N] : k/M^{1/2} \le W_t \le (k+1)/M^{1/2} \},\$$

$$A_{ik} = \sum_{j=1}^J \mathbf{1}_{I_{ikj}},$$

and

$$C_{ik} = \{A_{ik} \ge J^{(1/2)+\varepsilon}\}.$$

By Lemma 3.1 of [1] with $\lambda = J^{\varepsilon}$ and the Markov property applied at i/M we have $\mathbb{P}(C_{ik}) \leq c_4 \exp(-c_5 J^{\varepsilon})$.

There are at most $c_6 M^{3/2}$ rectangles Q_{ik} , so if $D_N = \bigcup_{i,k} C_{ik}$, where $0 \le i \le M$ and $-M^{1/2} - 1 \le k \le M^{1/2}$, then

$$\mathbb{P}(D_N) \le c_7 M^{3/2} \exp(-c_5 J^{\varepsilon}) \le c_7 \exp(-c_8 N^{\varepsilon/2}).$$

Let f be any function in S_{α} . If f intersects Q_{ik} for some i and k, then f might intersect $Q_{i,k-1}$ and $Q_{i,k+1}$. But because $f \in S_{\alpha}$ and $\alpha > 1/2$, it cannot intersect Q_{ir} for any r such that |r-k| > 1. Therefore f can intersect at most 3(M+1) of the Q_{ik} .

Now suppose $\omega \notin D_N$. Look at any one of the Q_{ik} that f intersects. Since $\omega \notin D_N$, then there are at most $J^{(1/2)+\varepsilon}$ integers j that are less than J and for

which the path of $W_t(\omega)$ intersects $([i/M + (j-1)/N, i/M + j/N] \times [-1, 1]) \cap Q_{ik}$. If f intersects a rectangle $R_{\ell m}$, then it can intersect a rectangle $R_{\ell r}$ only if $|r-m| \leq 1$, since $f \in S_{\alpha}$. Therefore there are at most $3J^{(1/2)+\varepsilon}$ rectangles $R_{\ell m}$ contained in Q_{ik} which contain both a point of the graph of f and a point of the graph of $W_t(\omega)$.

Since there are at most 3(M+1) rectangles Q_{ik} which contain a point of the graph of f, there are therefore at most

$$3(M+1)3J^{(1/2)+\varepsilon} < c_9 N^{(1/2)+2\varepsilon}$$

rectangles $R_{\ell m}$ that contain both a point of the graph of f and a point of the graph of $W_t(\omega)$.

Our present Proposition 2.1 is almost identical to Proposition 3.3 in [1], so the latter can be omitted. With this change, the remainder of [1], beyond Proposition 3.3, can proceed as in the original.

References

- R.F. Bass and K. Burdzy (2001). The supremum of Brownian local times on Hölder curves. Ann. I.H. Poincaré 37, 38 (2002) 627–642.
- [2] R.F. Bass and K. Burdzy (2002). Erratum to "The supremum of Brownian local times on Hölder curves." Ann. I.H. Poincaré **38**, 799–800.
- [3] N. Holden and S. Sheffield (2020) Probab. Th. rel. Fields 176, 219–292.

Richard F. Bass

Department of Mathematics University of Connecticut Storrs, CT 06269-3009, USA r.bass@uconn.edu

Krzysztof Burdzy

Department of Mathematics University of Washington Box 354350 Seattle, WA 98195-4350 burdzy@uw.edu