The supremum of Brownian local times on Hölder curves, II

Richard F. Bass and Krzysztof Burdzy *

July 24, 2023

Abstract

Abstract: For $f:[0,1] \rightarrow \mathbb{R}$, we consider L_{t}^{f}, the local time of spacetime Brownian motion on the curve f. Let \mathcal{S}_{α} be the class of all functions whose Hölder norm of order α is less than or equal to 1 . We show that the supremum of L_{1}^{f} over f in \mathcal{S}_{α} is finite if $\alpha>\frac{1}{2}$.

AMS subject classifications: 60J65, 60J55

1 Introduction

The main claim of [1] was that the supremum of Brownian local times over all α-Hölder curves is finite if $\alpha>1 / 2$ (see Theorem 1.1 below for the precise statement). An error in the proof was pointed out to us by A. Vatamanelu; however we were able to establish the claim for $\alpha>5 / 6$ in [2]. The purpose of this note is to prove the original claim from [1], that finiteness of the supremum indeed holds for all $\alpha \in(1 / 2,1]$. We also showed in [1] that $\alpha=1 / 2$ is the critical value; see Theorem 3.8 of that paper for the precise statement.

Let W_{t} be one-dimensional Brownian motion and let $f:[0,1] \rightarrow \mathbb{R}$ be a Hölder continuous function. There are a number of equivalent ways to define

[^0]L_{t}^{f}, the local time of W_{t} along the curve f, one of which is as the limit in probability of
$$
\frac{1}{2 \varepsilon} \int_{0}^{t} \mathbf{1}_{(f(s)-\varepsilon, f(s)+\varepsilon)}\left(W_{s}\right) d s
$$
as $\varepsilon \rightarrow 0$. See [1, Sect. 2] for a discussion of other ways of defining L_{t}^{f}. Let
$$
\mathcal{S}_{\alpha}=\left\{f: \sup _{0 \leq t \leq 1}|f(t)| \leq 1,|f(s)-f(t)| \leq|s-t|^{\alpha} \text { if } s, t \leq 1\right\}
$$

Our main result in this paper is the following.
Theorem 1.1. For any $\alpha \in(1 / 2,1]$, there exists \widetilde{L}_{t}^{f} such that
(i) for each $f \in \mathcal{S}_{\alpha}$, we have $\widetilde{L}_{t}^{f}=L_{t}^{f}$ for all t, a.s.,
(ii) with probability one, $f \rightarrow \widetilde{L}_{1}^{f}$ is a continuous map on \mathcal{S}_{α} with respect to the supremum norm, and
(iii) with probability one, $\sup _{f \in \mathcal{S}_{\alpha}} \widetilde{L}_{1}^{f}<\infty$.

The interest in Theorem 1.1 has several sources. One is that the metric entropy of \mathcal{S}_{α} is far too large for chaining arguments to work; nevertheless the supremum is finite a.s. Another is the work of Holden and Sheffield [3] on scaling limits of the Schelling model, where they used some of the techniques in [1] to analyze local times of random fields over Lipschitz surfaces.

In the interests of space we present only the changes needed to [1] to prove our result and refer to the original paper for the unchanged part of the proof.

2 The finiteness of the supremum

Let W_{t} be a Brownian motion. A key ingredient in our proof is Lemma 3.1 of [1]. The proof there is correct; the error in [1] was in how this lemma was applied further on.

We replace Propositions 3.2 and 3.3 in [1] by the following.
Consider an integer $N>0$. For $0 \leq \ell \leq N,-N^{\alpha}-1 \leq m \leq N^{\alpha}$, let $R_{\ell m}$ be the rectangle defined by

$$
R_{\ell m}=[\ell / N,(\ell+1) / N] \times\left[m / N^{\alpha},(m+1) / N^{\alpha}\right]
$$

Proposition 2.1. Let $\alpha \in(1 / 2,1]$ and $\varepsilon \in(0,1 / 16)$. There exist c_{1}, c_{2}, and c_{3} such that:
(i) there exists a set D_{N} with $\mathbb{P}\left(D_{N}\right) \leq c_{1} \exp \left(-c_{2} N^{\varepsilon / 2}\right)$;
(ii) if $\omega \notin D_{N}$ and $f \in \mathcal{S}_{\alpha}$, then there are at most $c_{3} N^{(1 / 2)+2 \varepsilon}$ rectangles $R_{\ell m}$ in $[0,1] \times[-1,1]$ which contain both a point of the graph of f and a point of the graph of $W_{t}(\omega)$.

Proof. Let $M=\left\lfloor N^{\varepsilon}\right\rfloor$ and set

$$
Q_{i k}=[i / M,(i+1) / M] \times\left[k / M^{1 / 2},(k+1) / M^{1 / 2}\right]
$$

for $0 \leq i \leq M$ and $-M^{1 / 2}-1 \leq k \leq M^{1 / 2}$. Let $J=\lceil N / M\rceil$.
Let

$$
\begin{aligned}
I_{i k j}=\{\exists t \in[i / M+(j-1) / N & , i / M+j / N]: \\
& \left.k / M^{1 / 2} \leq W_{t} \leq(k+1) / M^{1 / 2}\right\}, \\
A_{i k}= & \sum_{j=1}^{J} \mathbf{1}_{I_{i k j}}
\end{aligned}
$$

and

$$
C_{i k}=\left\{A_{i k} \geq J^{(1 / 2)+\varepsilon}\right\}
$$

By Lemma 3.1 of [1] with $\lambda=J^{\varepsilon}$ and the Markov property applied at i / M we have $\mathbb{P}\left(C_{i k}\right) \leq c_{4} \exp \left(-c_{5} J^{\varepsilon}\right)$.

There are at most $c_{6} M^{3 / 2}$ rectangles $Q_{i k}$, so if $D_{N}=\cup_{i, k} C_{i k}$, where $0 \leq$ $i \leq M$ and $-M^{1 / 2}-1 \leq k \leq M^{1 / 2}$, then

$$
\mathbb{P}\left(D_{N}\right) \leq c_{7} M^{3 / 2} \exp \left(-c_{5} J^{\varepsilon}\right) \leq c_{7} \exp \left(-c_{8} N^{\varepsilon / 2}\right)
$$

Let f be any function in \mathcal{S}_{α}. If f intersects $Q_{i k}$ for some i and k, then f might intersect $Q_{i, k-1}$ and $Q_{i, k+1}$. But because $f \in \mathcal{S}_{\alpha}$ and $\alpha>1 / 2$, it cannot intersect $Q_{i r}$ for any r such that $|r-k|>1$. Therefore f can intersect at most $3(M+1)$ of the $Q_{i k}$.

Now suppose $\omega \notin D_{N}$. Look at any one of the $Q_{i k}$ that f intersects. Since $\omega \notin D_{N}$, then there are at most $J^{(1 / 2)+\varepsilon}$ integers j that are less than J and for
which the path of $W_{t}(\omega)$ intersects $([i / M+(j-1) / N, i / M+j / N] \times[-1,1]) \cap$ $Q_{i k}$. If f intersects a rectangle $R_{\ell m}$, then it can intersect a rectangle $R_{\ell r}$ only if $|r-m| \leq 1$, since $f \in \mathcal{S}_{\alpha}$. Therefore there are at most $3 J^{(1 / 2)+\varepsilon}$ rectangles $R_{\ell m}$ contained in $Q_{i k}$ which contain both a point of the graph of f and a point of the graph of $W_{t}(\omega)$.

Since there are at most $3(M+1)$ rectangles $Q_{i k}$ which contain a point of the graph of f, there are therefore at most

$$
3(M+1) 3 J^{(1 / 2)+\varepsilon} \leq c_{9} N^{(1 / 2)+2 \varepsilon}
$$

rectangles $R_{\ell m}$ that contain both a point of the graph of f and a point of the graph of $W_{t}(\omega)$.

Our present Proposition 2.1 is almost identical to Proposition 3.3 in [1], so the latter can be omitted. With this change, the remainder of [1], beyond Proposition 3.3, can proceed as in the original.

References

[1] R.F. Bass and K. Burdzy (2001). The supremum of Brownian local times on Hölder curves. Ann. I.H. Poincaré 37, 38 (2002) 627-642.
[2] R.F. Bass and K. Burdzy (2002). Erratum to "The supremum of Brownian local times on Hölder curves." Ann. I.H. Poincaré 38, 799-800.
[3] N. Holden and S. Sheffield (2020) Probab. Th. rel. Fields 176, 219-292.

Richard F. Bass

Department of Mathematics
University of Connecticut
Storrs, CT 06269-3009, USA
r.bass@uconn.edu

Krzysztof Burdzy

Department of Mathematics
University of Washington
Box 354350
Seattle, WA 98195-4350
burdzy@uw.edu

[^0]: *Research of KB partially supported by Simons Foundation grant 928958.

