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Abstract

Abstract: For f:[0,1] — R, we consider L{, the local time of space-
time Brownian motion on the curve f. Let S, be the class of all
functions whose Holder norm of order « is less than or equal to 1. We
show that the supremum of L{ over f in S, is finite if a > %
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1 Introduction

The main claim of [1] was that the supremum of Brownian local times over
all a-Holder curves is finite if v > 1/2 (see Theorem 1.1 below for the precise
statement). An error in the proof was pointed out to us by A. Vatamanelu;
however we were able to establish the claim for & > 5/6 in [2]. The purpose
of this note is to prove the original claim from [1], that finiteness of the
supremum indeed holds for all « € (1/2,1]. We also showed in [1] that
a = 1/2 is the critical value; see Theorem 3.8 of that paper for the precise
statement.

Let W; be one-dimensional Brownian motion and let f : [0,1] — R be a
Holder continuous function. There are a number of equivalent ways to define
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L{ , the local time of W; along the curve f, one of which is as the limit in
probability of
1 t
5 |, Lue-esere(Ws) ds

as € — 0. See [1, Sect. 2] for a discussion of other ways of defining L. Let

So={f: Osupllf(t)] <L |f(s) = f(t)] < |s—t|*if s,t < 1}.

<i<

Our main result in this paper is the following.

Theorem 1.1. For any o € (1/2,1], there ezists L! such that
(i) for each f € S,, we have Z{ = L{ for allt, a.s.,

(i) with probability one, f — E{ is a continuous map on S, with respect to
the supremum norm, and

(iii) with probability one, sup;cs, L < .

The interest in Theorem 1.1 has several sources. One is that the metric
entropy of S, is far too large for chaining arguments to work; nevertheless
the supremum is finite a.s. Another is the work of Holden and Sheffield [3] on
scaling limits of the Schelling model, where they used some of the techniques
in [1] to analyze local times of random fields over Lipschitz surfaces.

In the interests of space we present only the changes needed to [1] to prove
our result and refer to the original paper for the unchanged part of the proof.

2 The finiteness of the supremum

Let W, be a Brownian motion. A key ingredient in our proof is Lemma 3.1
of [1]. The proof there is correct; the error in [1] was in how this lemma was
applied further on.

We replace Propositions 3.2 and 3.3 in [1] by the following.

Consider an integer N > 0. For 0 </ < N, —N* —1<m < N%, let Ry,
be the rectangle defined by

R = [(/N, (€ +1)/N] x [m/N®, (m +1)/N°].
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Proposition 2.1. Let a € (1/2,1] and € € (0,1/16). There exist ¢1,c2, and
c3 such that:

(i) there exists a set Dy with P(Dy) < c; exp(—cyN°/?);

(i1) if w ¢ Dy and f € S, then there are at most csN/2+% rectangles Ry,
in [0,1] x [=1, 1] which contain both a point of the graph of f and a point of
the graph of Wi(w).

Proof. Let M = | N¢| and set
Qi = [i/M, (i +1)/M] x [k/M"?, (k +1)/M"/?),
for 0 <i <M and —M"V?—1<k< M2 Let J = [N/M].
Let

Ly ={3tei/M+(j —1)/N,i/M + j/N] :
/MY < W, < (k+1)/M"?},

J
AZk - Z ]'Iikj7
j=1
and
Ci, = { Ay, > JWDFey,

By Lemma 3.1 of [1] with A = J¢ and the Markov property applied at i/M
we have P(Cy) < cyexp(—csJ).

There are at most cM?>/? rectangles Qyy, so if Dy = Ui xCik, where 0 <
i <M and —MY? —1 <k < M2 then

P(Dy) < ez M*? exp(—c5J°) < ¢z exp(—csN/?).

Let f be any function in §,. If f intersects Q;x for some ¢ and k, then
f might intersect @Q; x—1 and Q;;41. But because f € S, and o > 1/2, it
cannot intersect @y, for any r such that |r—k| > 1. Therefore f can intersect
at most 3(M + 1) of the Q.

Now suppose w ¢ Dy. Look at any one of the Q that f intersects. Since
w ¢ Dy, then there are at most J(/2*¢ integers j that are less than .J and for
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which the path of W;(w) intersects ([i/M +(j—1)/N,i/M+j/N]x[-1,1])N
Qir. If f intersects a rectangle Ry,,, then it can intersect a rectangle Ry, only
if [r —m| < 1, since f € S,. Therefore there are at most 3.J(/2*¢ rectangles
Ry, contained in @Q;; which contain both a point of the graph of f and a
point of the graph of W;(w).

Since there are at most 3(M + 1) rectangles ();; which contain a point of
the graph of f, there are therefore at most

3(M+ 1)3J(1/2)+6 S CgN(1/2)+2€

rectangles Ry, that contain both a point of the graph of f and a point of
the graph of Wj(w). O

Our present Proposition 2.1 is almost identical to Proposition 3.3 in [1],
so the latter can be omitted. With this change, the remainder of [1], beyond
Proposition 3.3, can proceed as in the original.
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