Errata for Real Analysis for Graduate Students, Second Edition

NOTICE: A later version of Real Analysis for Graduate Students is now available for free download: go to

http://www.math.uconn.edu/~bass/real.html

The errata pages for the second edition will no longer be updated.

Page 4, lines 3,4: \(B(x, r/2) \) and \(B(y, r/2) \)

Page 4, line -1: Add:

(3) if \(x \leq y \) and \(y \leq z \), then \(x \leq z \).

Page 11, Exercise 2.5: \(X \) into \(Y \)

Page 11, Exercise 2.6: whenever \(A \in \mathcal{A} \) is non-empty,

Page 15, line -7: such that \((X, \overline{\mathcal{A}}, \overline{\mu}) \) is complete, where \(\overline{\mu} \) is a measure on \(\overline{\mathcal{A}} \) that is an extension of \(\mu \), that is, \(\overline{\mu}(B) = \mu(B) \) if \(B \in \mathcal{A} \).

Page 16, line -1: Replace by the following:

\(B \in \mathcal{B} \) if and only if there exists \(A \in \mathcal{A} \) and \(N \in \mathcal{N} \) such that \(B = A \cup N \). Define \(\overline{\mu}(B) = \mu(A) \) if \(B = A \cup N \) with \(A \in \mathcal{A} \) and \(N \in \mathcal{N} \). Prove that \(\overline{\mu}(B) \) is uniquely defined for each \(B \in \mathcal{B} \), that \(\overline{\mu} \) is a measure on \(\mathcal{B} \), that \((X, \mathcal{B}, \overline{\mu}) \) is complete, and that \((X, \mathcal{B}, \overline{\mu}) \) is the completion of \((X, \mathcal{A}, \mu) \).

Page 20, line -7: that \(\emptyset \in \mathcal{C} \) and there exist \(D_1, D_2, \ldots \) in \(\mathcal{C} \) such that \(X = \bigcup_{i=1}^{\infty} D_i \). Suppose \(\ell : \mathcal{C} \to [0, \infty] \) with

Page 21, line -4: \(x \geq 0 \)

Page 25, lines 15–19: Replace by the following:

Let \(\delta > 0 \) and let \(A_j, j = 1, 2, \ldots \), be elements of \(\mathcal{C} \) such that \(I_i \subset \bigcup_{j=1}^{\infty} A_j \) and

\[
\sum_{j=1}^{\infty} \ell(A_j) \leq m^*(I_i) + \delta.
\]
Let $C_{ij} = I_i \cap A_j$, which will again be an interval (possibly empty) that is open on the left and closed on the right, and hence in \mathcal{C}. Write $J^c = K_1 \cup K_2$, where $K_1 = (-\infty, c]$ and $K_2 = (d, \infty)$.

Note $C_{ij} \cap J$ will be an interval that is open on the left and closed on the right, and the same is true of $C_{ij} \cap K_1$ and $C_{ij} \cap K_2$ (any of these could be empty). Using (4.4) twice,

$$\ell(C_{ij}) = \ell(C_{ij} \cap K_1) + \ell(C_{ij} \cap J) + \ell(C_{ij} \cap K_2).$$

We have that the set $I_i \cap J$ is contained in the union of the countable sub-collection $\{C_{ij} \cap J\}_{j=1}^{\infty}$ of \mathcal{C} and that the set $I_i \cap J^c$ is contained in the union of the countable subcollection $\{C_{ij} \cap K_1, C_{ij} \cap K_2\}_{j=1}^{\infty}$ of \mathcal{C}. Therefore

$$m^*(I_i \cap J) + m^*(I_i \cap J^c)$$

$$\leq \sum_{j=1}^{\infty} \ell(C_{ij} \cap J) + \left(\sum_{j=1}^{\infty} \ell(C_{ij} \cap K_1) + \sum_{j=1}^{\infty} \ell(C_{ij} \cap K_2) \right)$$

$$= \sum_{j=1}^{\infty} [\ell(C_{ij} \cap J) + \ell(C_{ij} \cap K_1) + \ell(C_{ij} \cap K_2)]$$

$$= \sum_{j=1}^{\infty} \ell(C_{ij}) \leq \sum_{j=1}^{\infty} \ell(A_j)$$

$$\leq m^*(I_i) + \delta.$$

Since δ is arbitrary,

$$m^*(I_i \cap J) + m^*(I_i \cap J^c) \leq m^*(I_i).$$

Page 28, line -12: $\inf\{f_0(y) : y \geq x, y \notin C\}$

Page 29, line 22: finite measure

Page 32, line 11: every set in \mathcal{A}_0 and every μ^*-null set is μ^*-measurable;

Page 32, line -3: μ^*-measurable. That μ^*-null sets are μ^*-measurable follow by the definition of μ^*-measurable and the fact that μ^* satisfies Definition 4.1(2).

Page 33, line 4: $E \in \sigma(\mathcal{A}_0)$

Page 35, line 17: Add:

This is known as the Steinhaus theorem.
Exercise 4.16 (1) Give an example of a set X and a finite outer measure μ^* on X, subsets $A_n \uparrow A$ of X, and subsets $B_n \downarrow B$ of X such that $\mu^*(A_n)$ does not converge to $\mu^*(A)$ and $\mu^*(B_n)$ does not converge to $\mu^*(B)$.

(2) Let (X, \mathcal{A}, μ) be a finite measure space, and define μ^* as in Exercise 4.3. Show that if $A_n \uparrow A$ for subsets A_n, A of X, then $\mu^*(A_n) \uparrow \mu^*(A)$.

Page 39, line 13: provided they are finite.

Page 44, Exercise 5.6: $f : \mathbb{R} \to \mathbb{R}$

Page 49, line -1: = instead of \to

Page 50, Exercise 6.7: Let (X, \mathcal{A}, μ) be a finite measure space

Page 58, line 12: Add:

For this problem you may use the fact that if f is continuous on $[a,b]$ and F is differentiable on $[a,b]$ with derivative f, then $\int_a^b f(x) \, dx = F(b) - F(a)$. This follows by the results of the next chapter and the fundamental theorem of calculus.

Page 76, between lines 15 and 16: Add:

If $A = \cap_{k=1}^{\infty} \cup_{j=k}^{\infty} A_j$, then $x \in A$ if and only if x is in infinitely many of the A_j. Sometimes one writes $A = \{A_j \text{ i.o.}\}$.

Page 83, line -1: $\mu(t_y(E_n))$

Page 85, line 10: Insert before “If either”:

Suppose μ and ν are σ-finite measures on X and Y, resp.

Page 88, lines -1,-2: Change exponent from $3/2$ to $3/4$ in both lines

Page 93, line -10: Insert before “whenever”:

with absolute convergence of the series when $\mu(\cup_{i=1}^{\infty} A_i)$ is finite

Page 96, lines 23, 24: $E = (\frac{1}{2}, 1]$ and $F = [0, \frac{1}{2}]$

Page 98, Exercise 12.4: Move to just before Exercise 13.9 in the next chapter.

Page 98, Exercise 12.6: $|\mu + \nu|(A) \leq |\mu|(A) + |\nu|(A)$
Page 105, Exercise 13.8: Suppose \(\mu, \nu, \) and \(\rho \) are finite measures, \(\nu \ll \mu, \) and \(\rho \ll \nu. \)

Page 114, line 6: for almost every \(x \) (with respect to the measure \(m \))

Page 114, line -6: Change \(\lambda((x, r)) \) to \(\lambda(B(x, r)) \)

Page 136, line 10: dense in \(L^p(\mathbb{R}) \) for \(1 \leq p < \infty. \)

Page 143, Exercise 15.15: Let \(p \in [1, \infty) \) and suppose \(\mu \) is a finite measure.

Page 156, Exercise 16.6, line -2: completion of \(L \times \cdots \times L \)

Page 174, lines -3,-2: \(x_0 \) not in \(M \) such that \(\inf_{x \in M} |x - x_0| > 0, \) we can define \(f(x + \lambda x_0) = \lambda \) for \(x \in M, \)

Page 175, line -3: and \(x_n \) both

Page 179, Exercise 18.3, line 5: times continuously differentiable

Page 180, Exercise 18.13: Let \(X \) be the space of continuously differentiable functions with the supremum norm and

Page 186, line -8: \(+2\|y\| \)

Page 187, line -11: Insert the following after line -11 and before line -10:

Lemma 19.8.1 Let \(M \) be a closed subspace of \(H \) with \(M \neq H. \) Then \(M^\perp \) contains a non-zero element.

Proof. Choose \(x \in H \) with \(x \notin M. \) Let \(E = \{w - x : w \in M\}. \) It is routine to check that \(E \) is a closed and convex subset of \(H. \) By Lemma 19.8, there exists an element \(y \in E \) of smallest norm.

Note \(y + x \in M \) and we conclude \(y \neq 0 \) because \(x \notin M. \)

We show \(y \in M^\perp \) by showing that if \(w \in M, \) then \(\langle w, y \rangle = 0. \) This is obvious if \(w = 0, \) so assume \(w \neq 0. \) We know \(y + x \in M, \) so for any real number \(t \) we have \(tw + (y + x) \in M, \) and therefore \(tw + y \in E. \) Since \(y \) is the element of \(E \) of smallest norm,

\[
\langle y, y \rangle = \|y\|^2 \leq \|tw + y\|^2 = \langle tw + y, tw + y \rangle = t^2 \langle w, w \rangle + 2t \text{Re} \langle w, y \rangle + \langle y, y \rangle,
\]

which implies

\[t^2 \langle w, w \rangle + 2t \text{Re} \langle w, y \rangle \geq 0\]
for each real number t. Choosing $t = -\text{Re} \langle w, y \rangle / \langle w, w \rangle$, we obtain

\[-\frac{\lvert \text{Re} \langle w, y \rangle \rvert^2}{\langle w, w \rangle} \geq 0,
\]

from which we conclude $\text{Re} \langle w, y \rangle = 0$.

Since $w \in M$, then $iw \in M$, and if we repeat the argument with w replaced by iw, then we get $\text{Re} \langle iw, y \rangle = 0$, and so

\[\text{Im} \langle w, y \rangle = -\text{Re} (i \langle w, y \rangle) = -\text{Re} \langle iw, y \rangle = 0.\]

Therefore $\langle w, y \rangle = 0$ as desired. \qed

If in the proof above we set $Px = y + x$ and $Qx = -y$, then $Px \in M$ and $Qx \in M^\perp$, and we can write $x = Px + Qx$. We call Px and Qx the orthogonal projections of x onto M and M^\perp, resp. It is an exercise to show that each element of H can be written as the sum of an element of M and an element of M^\perp in exactly one way.

Page 191, lines 4,5: basis, then, is a subset of H

Page 194, Exercise 19.3: M is a closed subspace of

Page 194, Exercise 19.5: Remove exercise. (This is now Lemma 19.8.1.)

Page 201, line -3: that is dense in X.

Page 207, line 11: and by the

Page 216, line 6: $\leq 4\varepsilon$.

Page 224, line 3: $\{G_1, G_2, \ldots\}$

Page 231, line 6: $2\|g\|_{\infty} \int_{|g| > \delta} \varphi_\delta(y) \, dy$.

Page 232, line -2 through Page 233, line 16: Replace with the following:

Lemma 20.42. Suppose \mathcal{A} is an algebra of functions in $C(X)$ such that \mathcal{A} separates points and vanishes at no point. If x and y are two distinct points in X and a, b are two real numbers, there exists a function $f \in \mathcal{A}$ (depending on x, y, a, b) such that $f(x) = a$ and $f(y) = b$.

Proof. Let g be a function in \mathcal{A} such that $g(x) \neq g(y)$. Let h_x and h_y be functions in \mathcal{A} such that $h_x(x) \neq 0$ and $h_y(y) \neq 0$. Define u and $v \in \mathcal{A}$ by

\[u(z) = g(z)h_x(z) - g(y)h_x(z)\]

and

\[v(z) = g(z)h_y(z) - g(x)h_y(z)\]
and
\[v(z) = g(z)h_y(z) - g(x)h_y(z). \]
Note that \(u(x) \neq 0, u(y) = 0, v(x) = 0, \) and \(v(y) \neq 0. \) Now set
\[f(z) = \frac{a}{u(x)}u(z) + \frac{b}{v(y)}v(z). \]
This \(f \) is the desired function.

Theorem 20.43. Let \(X \) be a compact Hausdorff space and let \(A \) be a lattice of real-valued continuous functions with the property that whenever \(x \neq y \) and \(a, b \in \mathbb{R}, \) then there exists \(f \in A \) (depending on \(x, y, a, \) and \(b \)) such that \(f(x) = a \) and \(f(y) = b. \) Then \(A \) is dense in \(C(X). \)
Since \(r > 1 \), then \(x \to |x|^r \) is continuously differentiable, and so \(w \in C^1_k \). We observe

\[
\lim_{x \to 0, N \to \infty} \int_{x < |x| < N} \frac{y_j}{|y|^{n+1}} f(x - y) \, dy
\]

We observe to those of

\[
\leq \frac{c_1}{\lambda_2^2} \|g\|^2_2
\]

Suppose we have found eigenvectors \(z_1, \ldots, z_n \) with corresponding eigenvectors \(\lambda_1, \ldots, \lambda_n \).

\[
Y = X_n^\perp
\]

If \(x \in Y \) and \(k \leq n \), then

\[
\leq 2|a| \|x\| \|Ax\|
\]

\[
\| (\lambda - A)(x_1 - x_2) \|^2
\]

Add at end:

Now use the right hand equality to define \(L_{x,y}f \) for all \(f \) that are bounded and Borel measurable.

\[
= \langle E(\sigma(A))x, y \rangle.
\]

\(n^{th} \) largest non-negative eigenvalue

\(n^{th} \) largest non-negative eigenvalue

\[
\text{supp} (f)
\]

finitely many sets

\[
\|f\|_{C^m(K)} \leq 1/m
\]

there exist a non-negative integer \(L \) and

\[
|D^j f(x) - D^j f(-x_0)|
\]

only possible limit is equal to \(g \) a.e. Therefore we may assume that
\[= (-1)^k D^{2k}G_g(f) \]

Page 391, line 14: \(D^k \mathcal{F}f \) is a continuous function, and hence \(\mathcal{F}f \in \)

Page 395, item [2]: Bourdon, and W. Ramey.

Special thanks to Evarist Giné and Sonmez Sahutoglu for pointing out many of the corrections above.