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THE DIRICHLET PROBLEM
FOR RADIALLY HOMOGENEOUS ELLIPTIC OPERATORS

RICHARD F. BASS

ABSTRACT. The Dirichlet problem in the unit ball is considered for the strictly

elliptic operator L =" a; I D, D where the a; ; are smooth away from the origin
and radially homogeneous: a; ](rx) = a,.j(x) , r>0, x # 0. Existence and
uniqueness are proved for solutions in a certain space of functions. Necessary

and sufficient conditions are given for an extended maximum principle to hold.

1. INTRODUCTION
Let L be the second-order strictly elliptic operator defined by
d

Lf(x)= ) a;(x)D,;f(x),

i, j=1
where the 4,; are C*® on R - {0} and radially homogeneous:
aij(rx)zaij(x), x#0, r>0.

The main purpose of this paper is to investigate the Dirichlet problem in the
unit ball for the operator L.

There is some question about what one means here by a solution to the
Dirichlet problem. Of course, one does not expect the solution /4 necessarily to
be in C?; one usually wants /£ to be (locally) in the Sobolev space w2? for
some p. But a simple example of Pucci [11] shows that one cannot guarantee
uniqueness of the solution, even with smooth boundary function, unless p > d ,
the dimension of the space. On the other hand, a recent example of Safonov
[12] shows, among other things, that one may not have a solution at all unless
p < d/2. In fact, there is an example by Lamberti and Manselli [10] of an
operator (although not a radially homogeneous one in a ball) where for each
p . either no solution exists in WP or else infinitely many solutions exist in
wh?.
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594 R. F. BASS

We formulate the Dirichlet problem slightly differently. Roughly speaking,
we replace Lebesgue measure in the definition of Ww?? with another measure
that is naturally associated with the operator L. We consider the Dirichlet
problem for boundary functions f that are bounded and continuous on JB,,
the boundary of the open unit ball B, . First of all, we require of any candidate
for solution # that

(i) A is bounded and continuous on B, (closure of B, );
(L.1) (ii) his C* in B, — {0};
(iii) LAh=0 in B, —{0};and
(iv) h=f on 9B,.

We define I'(y) to be the Green function for L for the unit ball with pole at
0 (a precise meaning of this is given in §2). We then prove (Theorem 2.3) that
there exists # > 0, depending only on the coefficients of a, with the property:

(1.2) There exists one and only one function # satisfying (1.1) and

d
/ S DA (OT(x) dx < oo forallR< 1.
Br i, j=1
Here B, is the open ball of radius R about the origin.

Another main result of this paper concerns the extended maximal principle
(cf. Gilbarg-Serrin [4]). We define a parameter Z in terms of the a; T We then
show (Theorem 2.1 and Proposition 2.2) that we have an extended maximum
principle:

(1.3) SUD, e (0} h()ﬂ SSUP.cyp h(x) whenever # is bounded and
continuous on B, — {0} and Lh =0 on B, — {0} if and only
if @>0.

As a by-product of our methods, we obtain the estimates
(1.4) Vhe L™ (By), D heL**(By) foralR<1.

The constant ¢ depends only on the coefficients of ellipticity, and VA denotes
the gradient of 4. It would be interesting to know if the estimates (1.4) hold
for nonradially homogeneous operators as well. Also, is the formulation of the
Dirichlet problem given above, using (1.1) and (1.2), applicable more generally?

The approach taken in this paper is probabilistic, and one of our motivations
was to compare solving the Dirichlet problem for L to solving the correspond-
ing martingale problem of probability theory. For the latter, the key step (see
[1]) is to show that the largest eigenvalue o of a certain positive operator Q is
simple. For the Dirichlet problem more is required: we must also estimate hit-
ting probabilities, Green functions, and rate of growth of solutions to LAz =0
in terms of «.

Concerning uniqueness (but not existence), there is a recent result of Caf-
farelli [15] that should be mentioned. Suppose the g, ; are smooth except at 0,
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strictly elliptic, but not necessarily radially homogeneous. Let a;']. be smooth
approximations to the a; ; and let s, be the solution to the corresponding
Dirichlet problem. Then Caffarelli showed that the functions 4, converge, and
the limit is independent of how the g, ; were smoothed.

In §2 we give some preliminaries and state our results precisely. In §3 we
give a criterion for whether the Markov process associated to L ever hits the
origin (nonpolar) or not (polar) and prove the extended maximum principle as
a corollary. We then consider the more difficult of the two cases, the nonpolar
one. In §4 we estimate hitting probabilities and the Green function, in §5 we
establish existence of a solution to the Dirichlet problem, and in §6 we prove
uniqueness of this solution. §7 covers the case where the origin is a polar set and
the Markov process is transient, while §8 deals with the case where the origin
is polar but the Markov process is neighborhood recurrent.

A few words about notation: We will use the letter ¢, with or without sub-
scripts, to denote constants whose value is unimportant and may change from
line to line. B, (x) denotes the open ball of radius r about x, B, the open
ball of radius r about 0.

2. PRELIMINARIES AND STATEMENT OF RESULTS

Let the operator L be defined by

d
(2.1) Lf(x)= Za x)D;; f(x),

i,j=1
where the g, ; satisfy

(i) (strict ellipticity) there exists k¥ > O such that for all
Yy .- ,yd)eRd, xeRd,

d d
-1 2
(2.2) “ ; z;ly V) < K g‘yi ’

i,
(ii) (smoothness) each a;; is C* on RY — {0}; and
(iii) (radial homogeneity) for each i, j, aij(rx) = aq j(x)
whenever r >0, x #0.

Let S be the unit sphere. If we write L in terms of polar coordinates (r, 6),
r>0, 68§, we get

2u(r, 0)+1

LI, 0)= 3707, 0)£,(r, 0) + (7, 0) fir. 6)
y(r, 9)

L s 0)+ ”L;—)Mf(r, ),
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where f, f, arethe derivatives of f in the radial direction, x = (x,, ..., x;)
=(r,0),

d
y(r, ) = 2r? Z x,a
i, j=1
u(r, 0) = trace(a)/y(r, 0) — 1,

(x5,

L is an elliptic operator on S containing the f, and f,, terms, and M is
an operator containing the mixed partials f,,. The reason for the strange form
of the coefficient of f, will be apparent shortly. By (2.2)(iii), 7, u, and the
coefficients of Lg and M are independent of r, and we will write y(6), u(6).
By (2.2)(i), y is bounded above and below away from 0. Hence using (2.2)(ii),
7, i, and the coefficients of L and M are C >, and Ly is strictly elliptic.

There is a unique strong Markov process (Pe , 6,) with state space S and
infinitesimal generator Lg (see [13]). Since S is a compact manifold, (Po , 0,)
has an invariant probability measure v(d6) on S [3, Example 3.1]. Equiv-
alently, let v(d6) be the measure with v(S) = 1 whose density v(6) with
respect to surface measure is the nonnegative solution to L:;v = 0, where L;
is the adjoint operator to Ly .

Define

(2.3)- 7= / u(0)v(do).

We then have the extended maximum principle:

Theorem 2.1. Suppose i > 0. Suppose h is bounded and continuous on B, —
{0}, Cc? in B, — {0}, and satisfies Lh =0 in B, —{0}. Then

sup A(x) < sup h(x).
x€B, —{0} XEOB,

This is complemented by

Proposition 2.2. If i < 0, there exists h bounded by 0 and 1, continuous on
B,. c?in B, — {0}, and Lh=0 in B, — {0} such that h(0)=1 and h=0
on 0B, .

Theorem 2.1 and Proposition 2.2 are proved in §3.

Consider the martingale problem for L starting at x . This is the question
of existence and uniqueness of a probability P* on the space of continuous
paths in R? such that
(2.4) P (X,=x)=1
and
(2.5)

t
f(X) - f(X,) —/0 Lf(X,)ds isa P"-local martingale for each f € c’.
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Existence follows by [13, Exercise 14.4.3]. Since the g, ; are C*® on R - {0},
the proof that P* is determined up to the first time the process hits 0 is standard
(see [13]). Uniqueness for the martingale problem then follows by [1] (although
the context is slightly different, the proofs of [1, §5] apply verbatim).

By Krylov [7], there exists a function I'(x), the Green function, such that

(2.6) E° /0 "1,(X,)ds = /A I(x)dx forall ACB,,
where
(2.7) T, =inf{t: | X,| =r}.

One can show that I" is continuous away from 0, but we do not need this.
Our formulation and solution to the Dirichlet problem is then given by

Theorem2.3. There exists n > 0, depending only on k, such that if f is con-
tinuous on 9B, , then there exists one and only one function h satisfying

(i) h is bounded and continuous on B ;
(i) & is C* on B, —{0};
(2.8) (iii) Lh=0 on B, —{0};
(iv) h agrees with f on 0B,; and
) Ip, X0 11D, B ()T(x) dx < 0o forall R < 1.

For the case when u > 0, it will turn out that (i)-(iv) are sufficient for unique-
ness.
As a by-product of our proof of Theorem 2.3, we will get

Theorem 2.4. There exists € > 0, depending only on k, such that if h satisfies
(2.8)(i)=(v), then

(2.9) Vhe L™ (By),  DyheL*(By) forallR<1.

Theorems 2.3 and 2.4 will be proved in §5 (existence when 77 < 0) , §6
(uniqueness when 7 < 0), §7 (the case z > 0), and §8 (the case 7 =0).

Let L = y(8)"'L. Note that Lh = 0 if and only if Lh = 0. The Markov
process corresponding to L may be obtained from that of L by a time change,
and it is well known (cf. [13, §6.5]) that if I'" is the corresponding Green
function, IN“(x) = y(6)[(x). Recall that y is bounded above and bounded
below away from 0. Thus, in the statements of Theorems 2.1, 2.3, and 2.4,
there is no loss of generality in replacing L by L or, equivalently, in assuming

Assumption 2.5. Z?,Fl xiaij(x)xj/|x|2 =1 forall x.

Assumption 2.5 will remain in force for the remainder of the paper.
Writing L in polar coordinates, we now get the much simpler expression

2:10) Lf(r, 6) = 37,r, 0+ 222110, 0)4 5L S, 042 M1, 0),
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where
u(@)=tracea(x)—1, x=(r,0).
We will use the following two lemmas frequently.

Lemma 2.6. Suppose D is an open region in R, T = inf{¢: X, ¢ D}, and f
is bounded on dD. Then h(x) = E* f(X;) is continuous in D.

Proof. This follows by the proof of Theorem 2 in [8]. O

Lemma 2.7. Suppose D, T, f, and h are as in Lemma 2.6. If 0 ¢ D, then
his C* in D and Lh =0 there.

Proof. Fix x, € D and choose ¢ small enough so that B, (x,), the ball of
radius 2¢ about x,, liesin D. Let S, = inf{z: X, ¢ B (x;)}. By the strong
Markov property, h(x) = E*h(X) if x € B,(x,).

By Lemma 2.6, & is continuous in B,(x,). Let u(x) be the solution to the
Dirichlet problem for L in B,(x,) with boundary function 4. Since the a;
are uniformly C* on B,,(x,), it is well known [5, Chapter 6] that u is C*
in B,(x,), continuous on B,(x,), and Lu = 0 in B,(x,). By Ito’s formula,

u(X,,g) 1s a martingale for r <¢. So

u(x) = E u(X r<e.

irs,)>

Using the boundedness of u# on B,(x,), let t — oo, then r — & to get
u(x)=E u(Xg) =E"h(Xg) = h(x).

Therefore A(x) is C* and Lh = 0 in the interior of B,(x,). Since x, was
arbitrary, this completes the proof. O

3. POLAR OR NONPOLAR

Let (P*, X ,) be the unique solution to the martingale problem for L starting
at x. We will use repeatedly the fact that (P”, X,) forms a strong Markov
process [13, §6.2].

In this section we give a criterion in terms of % for whether X, hits the origin
in finite time or not. We use this to prove the extended maximum principle.

We begin by expressing (P*, X ,) in polar coordinates (cf. the skew product
decomposition of [14]). Fix x = (r, 6), and write X, = (INQI , 5,). Recall that
if 0,;(x) is a square root of a,(x), we can write

X

A : t 4 -
(3.1) Xt(')zx(')+/0;aij(XS)dW(S), i=1,...,d,
j=

for some d-dimensional Brownian motion in W (see [13]).
It follows by Ito’s lemma, then, that R, solves

(3.2) R, =r+W,+/t(2u(és)+ 1)/2R, ds
0
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up until the first time |X,| = 0 and that (P9 6,) solves the martingale
problem for r_2Ls starting at (r, ). Here W, is a standard one-dimensional
Brownian motion. B

Now let (R,, 6,) be the time change of (R,, 6,) defined by

-1
(B, ),

t

(o))

R =RB", 6=

t
where

)
B'=/0 des.

Then, up until the first time of hitting 0, R, solves

(3.3) dR, =R, dW,+ (u(6,) + 1)R, dt, R,=r,
where W, is a standard Brownian motion.
Let
(3.4) 4 = /Ot u(6,)ds.
The equation (3.3) is linear in R, hence
(3.5) R, =rexp(W,+ 4,).

Also, note that (P("e) , 8,) solves the martingale problem for Lg on § start-
ing at 6. Since Lg is smooth and strictly elliptic, S is a smooth manifold,
and the coefficients of L, depend only on 6, there is at most one solution to

the martingale problem for L, on S starting at 6. We denote it by Pl By
[13], (Pe , 0,) forms a strong Markov process with state space .

Theorem 3.1. For each 0,

@) if @>0, W,+ A4, -+, Pl-as.;

b) if E<0, W,+ A4, — -0, Plas.
Proof. A, is an additive functional of 6,, and by the ergodic theorem (see [2]
or [3]), 4,/t =&, P’-as.

Suppose > 0. If ¢ > 0, it is well known that W, + ¢t — +o0, a.s. as
t — oo. Given ¢, there exists #, such that

PB(A, < 47t for some ¢t > 1)) < ¢.

Then for each N

PG(W, + A, > N eventually ) > PG(W, + %ﬁt > Neventually ) —e>1-¢,

which proves (a).
The proof of (b) is similar. O

Let
(3.6) 7, = inf{t: | X,| =r}.

We use Theorem 3.1 to get the criterion:



600 R. F. BASS

Theorem 3.2. Suppose x # 0.

(@If@>0, P (ty<o0)=0 and P*(|X,| 500 as t - o0) = 1;

(b) if <0, P*(try<00) =0 and P*(|X,| — oo as t - 00) =0;

(© ifm=0, P*(ty<o0) =0, P(|X,| - 00) =0, forall r, P*(1, < 00) = 1.
Proof. Write x = (r, 0). If @ > 0, then W, + 4, — +o0, a.s. by Theorem
3.1. Since log|R,| = logr + (W, + A,), then inf,log|R,| > -0, a.s.50 7, = 00,
a.s.and liminf,__log|R,| = 400, or |R,| — oo as ¢t — oo. Part (a) follows
easily.

Suppose now z < 0, and let ¢ > 0. Since W, + 4, —» —oo, a.s., we can find
N, such that for all M

P°(logr + W, + A, hits — M before hitting N) > 1 — ¢

whenever N > N,. Since the time change that gives |X,| = 1~2, from R, is
nondegenerate (i.e., dB,/dt is bounded below) when R, > e ™ >0, we have

P*(|X,| hits e~ before hitting ") > 1 —¢.

Let M — oo to get P*(1, < Topvy) = 1 — €, thenlet N — oo, then ¢ — 0.
The second part of (b) follows from the first part and an elementary renewal
argument.

Recall that (Pe , 0,) is the process on § with generator Lg. Since
[ wowo) =z=o,

it is well known (see [2]) that E o u(6,) goes to 0 exponentially fast, uniformly
in 8,as t - o0.
Let

(3.7) d(6) = /Ow E°u,)dt.

Since u(6) is C* and the coefficients of Lg are C* and strictly elliptic, d(6)
is C* and

(3.8) Lgd=—u.
Set
(3.9) u(x) =logr+d(6), x=(r,0).

Then applying (2.10), noting that the u,, terms are 0, and using (3.8),
Lu(x)=0, x#0.
Hence U, = u(4X, Mo) is a local martingale.

By [1, Lemma 5.1], P*(t, <o0) =1 if |x| <r. So U, is certain to exit the
interval [-M, N]. Then, since U, is a time change of Brownian motion,

PX(U, hits — M before hitting N) = (N — u(x))/(M + N).
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Using the definition of u, noting that d(#) is bounded, and letting M — oo
leads as above to P*(1, < 00) =0.

Similarly, holding M fixed and letting N — oo leads to P’(1, < o0) = 1
for all r > 0 as above.

A renewal argument shows that P*(|X,| < r io. as t — oo0) = 1, which
implies P*(|X,| > 00)=0. O

We refer to the cases where 7 > 0 as polar since O is a polar set, the case

I < 0 as nonpolar.
The proof of Theorem 2.1 is now easy.

froof of Theorem 2.1. Suppose & > 0, and suppose 4 is bounded by M on
B, —{0}. Let y € (0, 1). By Lemma 2.7, the solution to the Dirichlet problem
in B, — B, with boundary values / is again 4, and if || <x,

h(x) = E"h(X, ,, )
= Ex(h(XTl); 7,<1,) +Ex(h(XTy); T, <1)

< sup A(y)+ MP (1, <1).
y€EIB,
Let y — 0; by the continuity of paths, lim
using Theorem 3.2. O

Proof of Proposition 2.2. Let h(x) = P"(t0 < 1,). By Lemmas 2.6 and 2.7, & is
C* in B, — {0} and Lh =0 there. (Here D= B, — {0}, f(0)=1, f=0 on
0B, .) Tt remains only to show (i) lim,_,/A(x) =1 and (ii) lim,_, h(x) =0
if yedB,.

The first follows from scaling (see [1, proof of Proposition 5.3]): if x = &y
wherc |y| =1, then

oo P (1, <7) =P (1y<1,)=0,

x—0

Pity<1)=P(ry<1,,) = P(ty<t,)=1
as e —0.

For the second, by the strong Markov property, A(x) = Ex(h(Xty) 3T, <1y,
where y = 1/2 < |x|. The coefficients of L are smooth on B, — B,. So the
solution to the classical Dirichlet problem for L with boundary values /2 on
6By and 0 on 9B, is continuous up to and including the boundary [5, Chapter
6]. By Lemma 2.7, the solution is Ex(h(Xry); T, <T)+E*(0; 1, <1,) =h(x).
Hence 4 is continuous on 9B,. O

4. GREEN FUNCTION—NONPOLAR CASE

In the next three sections we consider the nonpolar case: u < 0, which
is the most difficult. First we introduce a positive operator Q, examine the
eigenvalues of @, and then estimate the probability of hitting 0 and estimate
the Green function with pole at 0 in terms of the largest eigenvalue of Q.
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We suppose throughout this section that z < 0.
For b€ (0, 1), let Q, be the operator on functions on S defined by

(4.1) Q,f(x) = E™(f(X,);7,<7)), x€S,
where t1,, 7, are defined by (3.6). We write simply Q for Q, -

Proposition 4.1. Let b € (0, 1). Fix x, € S, and let n(dy) = Q,(x,, dy) =
Pbx°(XT‘ €dy; 1, <1y). Then
(a) Q, is a bounded operator on Lz(dn);

(b) Q, is a bounded operator from L' (dn) to F(S), the continuous functions
on S;

(c) the largest eigenvalue 4, of Q, is positive and strictly larger in absolute
value than any other eigenvalue of Q,, A, < 1, and the corresponding eigen-
function e, is continuous and strictly positive.

Proof. By the Harnack inequality of Krylov-Safonov [9], there exists a constant
0 depending only on x of (2.2) and b such that if f:S — [0, 00),

LB T <w)
TEM(f(X, )51, < )
(Recall Lemma 2.7.) Consequently, Q,(x, dy) << m(dy), and the density

q,(x,y) = Q,(x, dy)/n(dy) may be taken to be bounded by 6" .
Since

! forallxeS.

(4.2) <0

0,f(x) = / F0)Q,(x, dy) = / F)a,(x, y)n(dy)
and

/S /s gy(x, y)n(dx)n(dy) < 672,

(a) follows by Cauchy-Schwarz.

To prove (b), suppose f € L'(dn) and f>0. Then Q,f(x,) < ||f||L1(dn).
By (4.2), Q,f(x) < O_IQbf(xO) for all x € S, which proves Q, f is bounded
on S.

By the Harnack inequality of Krylov-Safonov again, if x € § and ¢ is taken
small enough so that B, (bx) C B,(0), there exists a constant ¢ (depending on
¢ and k) such that h(y) = Ey(f(th); 1, < 1) < ¢Q, f(x) for y € B,(bx).
By the strong Markov property,

b
Q,f(x) = E™h(Xy),
where
S, =inf{t: X, ¢ B,(x,)}.
So by Lemma 2.6, Q, f is continuous.
The operator Q, is strongly positive and compact; for a proof see [1, §5].

Therefore, just as in the argument there, assertion (c), except for the 4, < 1
claim, follows by a the Krein-Rutman theorem.
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Pick x such that e,(x) =sup,e,(y). Then

bx

Apey(X) = Qpey(x) = E (,(X, )3 T, < 7¢) < sxylpeb(y)Pbx(rl < 1p)

= eb(x)Pbx(‘tl <7

Since e, is strictly positive and Pb"(rl < 1,) < 1 by the proof of Theorem 3.3,
A, <P™(1,<t)<1. O

We normalize e, so that [je;dn=1.
Although we know 4, > 0, we need for use in §5 to show that it is greater
than a constant depending only on ¥ and b.

Corollary 4.2. There exists a constant ¢ depending only on k and b such that
Ay 2c.
Proof. Analogously to the last paragraph of the proof of Proposition 4.1, 4, >

inf Pb"(rl < 1,). But P’”‘(tl < 17,) can be bounded below by a constant
depending only on ¥ and b by the Stroock-Varadhan support theorem [6,
Exercise 6.7.5] (cf. [1, proof of Theorem 5.4]). O

Let
(4.3) - d(0) =e,,(0), 0es,
(4.4) a= logil/z/log(l/Z) >0,
and let
(4.5) u(x) =r"d), x=(r,0).

Proposition 4.3. (a) u(x) = Ex(d(XTI); 1,<1,), XEB;
(b) u(X, Mo) is a P*-local martingale for all x;
(c) d is bounded above and bounded below away from 0; d is C™ on S.

Proof. Suppose b € (0, 1). By the strong Markov property and radial homo-
geneity, (Q,)" = Q;», and so Q,.e, = A;e, . By the Krein-Rutman theorem [6,
Theorem 6.3], Q,» has only one strictly positive eigenfunction, hence e, is a
constant multiple of e, , and 4,, = (4,)".

Now suppose |x| = (1/2)™", m, n positive integers, and let b = |x|.
Qy = Qy/yym » hence Ay = /1'1';2 ,and Q,d = A, d . Therefore

E*(d(X, ); T < T0) = @, d(x/b) = 4,d(x/b) = (4,,)""" d(x/|x])
= |x|" d(x/|x]).

This proves (a) for |x| of the form (1/2)°, s rational. Ex(a'(XTl); 7, < Tp)
is continuous in B, — {0} by Lemma 2.6, and u is evidently continuous as a
function of |x|. So (a) holds for x € B, — {0} .
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Now
|Ex(d(XTl); 1, <) < dIP*(t, <15) =0 asx—0
by the argument in the proof of Proposition 2.2. So (a) holds for x =0.
By Lemma 2.7, u(x) is C* in B, — {0} and Lu =0 there. So

(4.6) 0=Lu= ra_z[a(a -1)d/2+a2u+1)d/2+ Lgd +aM(rd)]
for r € (0, 1). But then the expression inside the brackets, which is indepen-

dent of r, is O for all 8, hence (4.6) holds for all r > 0. (b) then follows by
Ito’s lemma.

We have already mentioned that u is C*° in B, — {0}. This shows d is
smooth. The boundedness part of (c) follows immediately from Proposition
4.1(c). O
Corollary 4.4. d(60) is bounded above and below by constants depending only on
k. There is a modulus of continuity for d(0) depending only on « .

Proof. Since d = e, P is normalized to have L? norm one with respect to a

certain measure, there is at least one point x for which d(x) < 1. Hence
Qd(x) < 11/2 , and by (4.2),

sup d(y) = (4,,)"' sup Qd(y) < (A,,) 07 Qd(x) <67
yE€S y€eS

similar. The assertion about the modulus of continuity follows from Lemma
2.6 and its proof. O

Since there must be at least one point at which d is > 1, the lower bound is

The Q = Q, /2 that we have defined here is, by scaling, the same as the Q
defined in [1]. Williams [14] has given a quite different method of constructing
a positive solution to Lu = 0. Our construction sheds additional light on hers,
and vice versa.

Having constructed the function u, we can now begin doing some estimation.
Let

(4.7) Vi={x:iu(x)<2'}, i=..,-2,-1,0,1,2,...,
(4.8) F =aV,

and

(4.9) o, =inf{t: X, € F}.

Proposition 4.5. There exist constants c,, ¢, >0 such that
¢ |x|" < P¥(t, < 1p) < glx|”
for x sufficiently small.
Proof. Since d(6) is bounded below there exists i, such that V,.2 2 B, . Then

Pi(t, <19 > P"(a,2 < 1,) = P*(u(X,) hits 2" before hitting 0)

= u(x)/2" > ¢,|x|%,
since u(X,) is a martingale.
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Similarly, there exists ¢, such that ¥, C B,, and then
1

P¥(1, < 75) < P*(0, < 17,) = P*(u(X)) hits 2" before hitting 0)

=u(x)/2" <clx*. O

As a corollary, we have

(4.10) llilmo(long(‘cl < 14)/log|x]) = a.
X|—

On the other hand, it is possible to estimate P*(1, < 7,) in terms of the
probability that log |x|+W,+A4, ever hits O (see §3). Although this does not quite
fit into standard large-deviations theory, one might be able to get asymptotic
estimates by techniques from that theory; tying u(6) and a together would
answer some questions raised by Williams [14] in a similar context.

Lemma 46. a<1.

Proof. From (2.10) and Assumption 2.5, u(6) > —4.
From (2.10) and Ito’s formula, |X,| is a submartingale whose martingale part
is a Brownian motion, /Wt Hence, for x small,

P, <15 2 PO(/WI + | x| hits 1 before hitting 0) = |x|.
By Proposition 4.5,
¢yl x[* 2 |x|
for all |x| sufficiently small, which implies « <1. O

We now come to the main estimate of this section.

Theorem 4.7. There exist constants ¢, and c, such that

I(x) < c2|x|2_d_a a.e. on B,

and

I'(x) > ¢, X" a.e. on some neighborhood of 0.
Proof. Let
(411) A1=Vi+4_V;'—3’

G, = sup{gA,(x’ y):x€F_,UF 3, yeV -V},

where g, is the Green function for 4; with pole at x. Since L is smooth on
Vic_3 , &, iscontinuousin x and y exceptat x =y. Hence G; < .

Suppose y € V,, = V,_, and let B,(y) be the ball of radius & about y,

¢ sufficiently small so that B, (y) C V;, 5 —V,_,. We will write g, (x, B,())
for [, ) 84 (x, z)dz . Using scaling with the factor 27l (cf. [1, Proposition
5.3]), the expected amount of time spent in B,(y) before leaving 4, starting at
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x is 27%* times the expected amount of time spent in 321/08(21/ “y) starting
at 2'/%x before leaving A, , or

—2/a 1/a et
g, (x, B,0) =2""¢g, (2"x, By 2")).

Dividing by the volume of B,(y), letting ¢ — 0, and using the continuity at

Y,
-2 d/a a
(4.12) g, (x,y) =270, (2lex, 2ty
Hence
. d-2)/a
(4.13) G=2977G, .
Fixing i, so that B, C V. _. and then induction gives
2 1 =35
(4.14) G, =217PTG, < ol ie,
Now let
(4.15) H; =sup{g(x, B,(»)): x € F,_,UF, 5,y €V, -V},
where

al
g0, BN =E* [ 15X, ds,
a; is-defined by (4.9), and B,,(y) C V;

1

2= Vi, forall ye v, -V,
Fix yeV, -V, i<i,—5. Startingat z € F,_;, one is certain to hit F,_,
before entering B,(y), and so by the strong Markov property, g(z, B,(y)) <
€
H; .
If zeF,,,

P*(0,,5 < 0,) = P*(u(X,) hits 2" before hitting 2°)

(4.16) i i+4 i i+3 i
=(2’2—2 )/(27=2"7)<1-=¢2".

So by the strong Markov property, g(z, B,(y)) < (1 - 62")Hie if zeF,,.
Let T, =inf{z: X, ¢ A,;}. Then just as in (4.16),

X (27_ 1)_1’ xel:,’_z,
(4.17) P (Xr €F )= 6 7
! 2°=-1/2" -1, x€F,,.

Using the strong Markov property again and (4.17), if x € F,_,UF,

i+3°
g(x, B,(y)) = g, (x, B,(») + E"g(X, , B,(»))
<g,(x, B,(y) + H P"(X; € F_;)

(4.18) .
+(1-c2"YH;P* (X, € F,

+a)
< we’G + H (1-¢2").

Here w, denotes the Lebesgue measure of the unit ball.
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Holding i fixed but taking the sup over yeV, , - V,, x€ F,_,UF_;,
H <G +H(1-c2),
or, from (4.14),
(4.19) H; < c2_iGiwd8d < c2i(2_d_a)/awd8d.

Since o, >, and |y|* < cu(y) < 2™V if y e v, — V., the strong Markov
i 1 i+1 i
property yields

(4.20) T(z)dz < g(0, B,()) < H < clyl™ " “w,e”.
B,(y)
Since & can be arbitrarily small, this yields the upper bound.

Choose i, so that V,.l +s € B, . Replacing i, by i, replacing sup by inf in
the definitions of G, and Hf , noting G, > 0, and reversing the inequalities
in the above argument gives the lower bound. However, the argument is valid
only for y € Vi. , which is why the lower bound holds only for a neighborhood

of 0. O

5. EXISTENCE—NONPOLAR CASE

In this section we establish the existence part of Theorem 2.3 in the case
7 < 0. Suppose f is bounded and continuous on 0B, .
Let

(5.1) Mﬂ=ﬁﬂ&)

Recall the definition of V;

i F
sup,n—inf h.

., and og; in (4.7)-(4.9). Write Osc h for

Proposition 5.1. There exists y < 1 depending only on k such that

OVsch < %y(l}sch, provided V;,, C B, .
J

J+1

Proof. By taking a linear transformation, we may suppose that inf, h =0

J+1
and sup, lh = 1. Since A is continuous in VjH by Lemma 2.6 and A(x) =
I+
E*h(X, ) for xeV,
J

i by the strong Markov property, we have inf, . h=0,
+1 I+
sup, h=1.
J+1
Since h(x) = E*h(X,) for x € Vi, Oscy, h < Oscy h, and the proposition
J J J

will be proved if we show

. <1 .
(5.2) Ochh_ 2y(F)sch

J+1

Fix j,. In view of Corollaries 4.2 and 4.4 and the definition of u, the
minimum distance between Fjo and F o1 is bounded below by a constant
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depending only on k. So by the Harnack inequality of Krylov-Safonov [9],
there exists ¢ depending only on x such that for j = j,,
P*(X

O'J+

<
= PX,

J+1

By scaling, (5.3) holds for all j, with § independent of ;.
Fix x, € F ;- By looking at 1 — & if necessary, we may suppose

€A4;0,,,<T1,) B
' 2 <67, x,yeF, ACF,

(5.3) 0 < .
€d;0,, <1y J+

X
(5.4) PR(X,

€ AT 01 <Tp) 2 10"0(ng+l €4 ;0,,,<71y),
where
AT ={yeF,:hp)>4}, A ={yeF 1h(y)<i}.
)

Forany x € F;, P*(1y<0;,,) = P*(u(X,) hits 0 before hitting 2t =1.

Jj+1
So
55) h(x) = Exh(Xam) = Ex(h(XajHMO); 0,01 < T) +h(0)P (1< 0},,)
< PY(0;,, <T) +h(0)P (1y < 0,,,) < 5+ 3h(0).
But also,
h(x) = E*(h(X, )30, <o)+ 3h(0)

> 3PN(X, € A5 0, < 1) + 3h(0)
(5.6) > %GPX"(XUM €450, <19+ 3h(0)

> 10P(g,,, < 7o) + 3h(0)

=16+ 1h(0).
Comparing (5.5) and (5.6), we have

which gives (5.2) with y=1-46. O
Proposition 5.3. There exists 6, > 0 depending only on k such that
Osch < A, <.

Proof. Pick i, so that V,.l C B, . Suppose r is sufficiently small of that B, C

Vi| . Given r, let j be the smallest integer such that B, C V. Then 2/ < clr|”®
and

< < (4p)r’ <c(ip™
%fCh— OVfCh—(zy) (‘)/‘slch_c(zy) (%?ch
< er® Osch,
BI

where J, = —Iny/In2.
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Since OscB h < 2| f]| follows from (5.1), this proves the proposition for
r sufficiently small, Since OscB h < OscB h < 2||f]l, by taking ¢ larger if
necessary, we have the proposmon for all r < 1. O

Proposition 5.3. There exists d, > 0 depending only on x such that
Osch < 2 \fl, r<l.

Proof. This is similar to the preceding, but a little simpler. By the Harnack
inequality, pick 6’ such that

(5.7) 6 < P, ed <) €0B,,,, ACOB
. —Py(X EA)_( ) X,y 12> A =05,
Fix x,€0B,, % , and suppose sup, h=1, inf, h =0, and
Px°(Xr2 ed") > P"O(X,Z €A)
with

Y={yeoB, h(y) 24}, A ={yeoB,:h(y)<}}.
Then if x €9B,, h(x) <1, and by (5.7) and scaling,
+
h(x) = Exh(XTZ’) > %PX(XH’ eAh
>16'PO(x, ed’) 246
Hence

(5.8) Osch<(1-16Y0sch, r<i.
Br BZr

Proposition 5.3 follows from (5.8) similarly to the proof of Proposition
52. O

Corollary 5.4. There exists & depending only on x such that
%sch <11

Proof. Let d = (1A6,)5,/2. If a <4,/2, the corollary follows by Proposition
5.3. If a>4,/2, it follows by Proposition 5.2. O

Theorem 5.5. h(x) defined by (5.1) satisfies (2.8)(i)—(v).

Proof. The boundedness of 4 is clear by (5.1). Assertions (ii) and (iii) follow
by Lemma 2.7. Since /4 agrees with the unique solution to the Dirichlet problem
for L on B, — B, with boundary function f on 9B, and & on 9B, h
is continuous at 0B, and agrees with f there (cf. proof of Lemma 2.7). The
continuity of 4 at 0 comes from Lemma 2.6, and it remains to prove (v).

By the bounds on I' from Theorem 4.7 and the fact that 4 € C? on B,—{0},
it suffices to restrict attention to R < 1/2. By adding or subtracting a constant,
we may suppose /#(0) = 0. Then if x € By, h solves the Dirichlet problem for
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L on the ball B, ,(x) with boundary function # by Lemma 2.7. So 4 € C?
there, and it is well known [5, Chapter 6] that

-2
(5.9) DA <clxl™ sup  |h(2)l,  y € By ).
zeaBle/z(x)
The constant ¢ may depend on the smoothness of the g, ;-
But then
(5.10) D, ;h(x)| < clx|™* sup |A(x)| < clx|” Osc h < clx| 72,

2€By, 12 Byjuip
by Corollary 5.4 and the fact that 4(0) =0.
Estimate (5.10) and Theorem 4.7 give, changing to polar coordinates,
R

/ |Dijh(x)|l+nr(x) deC/ rd—l(r—2+a+6)1+nr2—d—a dr.
By 0

Recalling Lemma 4.6, this gives (v) if n<Jd/(2-a—-J). O
Corollary 5.6. There exists ¢ > 0 depending only on x such that

Vhe L™ (By), DheL(B,), R<I.

Proof. The second assertion follows by integrating estimate (5.10) in polar co-
ordinates. Just as we obtained (5.10), we get

-1 —1+a+d
(5.11) - |D;h(x)| < c|x| sup |A(z)| < c|x| .
3|x|/2

Integrate (5.11) in polar coordinates to get the first assertion. O

6. UNIQUENESS—NONPOLAR CASE

In this section we complete the proof of Theorem 2.3 for the case & < 0 by
showing uniqueness. We first show uniqueness for the Dirichlet problem for
Vi, , where [, is chosen so that V,.l CB,.

Proposition 6.1. Suppose [ is a bounded continuous function on F’] . Suppose
v, and vz are two bounded continuous functions on Vi agreeing with f on

F c? f —{0} satisfying Ly, =0 on V —{0}. j =1, 2, and satisfying
hypotheszs (2. 8)( v) for some R< 1. Then v, =v, on V, .

h
Proof. By considering v = v, — v,, we may suppose f = 0. Since L has
smooth coefficients on B, — {0}, if v(0) = 0, then by the usual maximum prin-
ciple, v =0 on V We suppose then that v(0) # 0 and obtain a contradiction.
By multiplying by a constant, we may suppose v(0) =1.

Consider w(x) = P* (1o < all). By Proposition 2.2, proved in §3, v —w is
bounded and continuous on Vi, , (v—w)(0)=0,v—w=0 on Fi, , V—w is
C? on V;l — {0}, and L(v —w) =0 there. By the usual maximum principle,

vzwonVi.
1
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If x=(r,0)€ Vi. is such that u(x) = 8, then

. i _
w(x) = P'(1, < 0;)= P (u(X,) hits 0 before hitting 2") = %
(6.1) !
= l—% =l-cB=1-cu(x)=1-cr"d(9).

But then D, w(x) = clx[*2d(6) > c|x|*". And

d R
/ > |D,.jw|1+"(x)l“(x) dx > c/ R LA S Ry,
Br i =1 0
since by Lemma 4.6, a < 1,hence d -1+ (1+n)(a-2)+2-a-d < -1.
This contradicts the assertion that v = w satisfied (2.8). Hence the proof is
complete. O

We now complete the proof of Theorem 2.3 in the case 1 < 0.

Theorem 6.2. Suppose n > 0. There is at most one function h satisfying hy-
potheses (2.8)(1)-(v).
Proof. Just as in Proposition 6.1, the theorem will be proved if we show w(x) =
P¥(1, < 1,) does not satisfy (2.8)(v).

Consider the Dirichlet problem on Vi, with boundary function w. Let

h(x) = Ex"_U(Xa,l ). If r, is taken small enough so that B,O - Vi, , then by the
strong Markov property A(x) = Exh(XT ). By applying scaling to Theorem
5.5, h satisfies (2.8)(i)-(v) if B, is repla’ged by B,O. Also, since & solves the
Dirichlet problem on Vi, _B'o with boundary function w on F,.] , h on BBrO ,
h is one solution to the Dirichlet problem on Vi, satisfying the hypotheses of

Proposition 6.1. Moreover, by Corollary 5.4, there exists > 0 such that

(6.2) (%sch <o,

Suppose now that w(x) satisfies (2.8)(v). By the proof of Proposition 2.2,
w also satisfies the hypotheses of Proposition 6.1. Therefore, by the conclusion
of Proposition 6.1, w =h on V, .

b
But by Proposition 4.5, we know 1 — w(x) > c|x|* for x small. Since
w(0) = 1, this contradicts (6.2). Therefore w cannot satisfy (2.8)(v), which
proves the theorem. O

7. POLAR, TRANSIENT CASE

In this section we prove Theorem 2.3 in the case @ > 0. The proof is
considerably easier in this case.
For b > 1, define

(7.1) 0, f(x) = E™(f(X, ); 7, <),
0= Qz-
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Completely analogously to the 7 < 0 case, Q, is strongly positive and com-
pact. The eigenfunction d(6) corresponding to the largest eigenvalue of Q is
strictly positive. As in §4, there exists o > 0 such that

(7.2) u(x) = Ex(d(th); T, <o00)=r "d(6), x=(r,0), r>1,
is C* and solves Lu =0 in Fi , but now note the exponent of r in (7.2) is
negative. Arguing as in (4.6),
—a(—a—1)d/2—a2u+1)d/2+ Lgd —aM(rd) =0
for all 6, hence Lu(x) =0 for all x # 0. Therefore u(X,

7, =00, a.s.) is a local martingale.
Let

(7.3) V={x:ux)>2""}y, i=...,-2,-1,0,1,2,...,
so that we still have V; C V, . Define F; and g; as in (4.8), (4.9).

Theorem 7.1. There exists a constant ¢ (depending on o) such that

/\fo) = u(X,) (since

I'(x) < c|x|2_d a.e. on B,.
Proof. The proof is very similar to that of Theorem 4.7, with one exception. If
zeF,,, i<i,-5, ,
P*(0,,, <0, ) = P*(u(X,) hits 27U before hitting 272)
(7.4)- 9=(i43) _ y=(i+4)

P <l-c, c>0
(cf. with 1 — ¢2' in (4.16)). Just as in (4.17), P* (X, € F,,,) is still bounded
above and below by constants independent of i.

With (7.4), (4.19) becomes

(7.5) H; < cledsd < c2i(2_d)/awd8d

and (4.20) becomes

N(z)dz < clyf “w,e’,
B,(n)

which yields the desired result. O

Note that Proposition 5.3 makes no use of the hypothesis & < 0, and hence
the assertion is valid in the cases 7 > 0.
Suppose f is bounded and continuous on 9B, . Let

(7.6) h(x) = Exf(XTl ).

Theorem 7.2. h(x) defined by (7.6) satisfies (2.8)(i)-(v). There is at most one
Junction h satisfying (2.8)(i)-(v).

Proof. Following the proof of Theorem 5.5, (2.8)(i)-(iv) hold. We may suppose
h(0) =0 and R < 1/2, and then exactly as in the derivation of (5.10),

(7.7 D, h(x)| < c|x|_2 BOsc h.

3(x1/2
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Applying Proposition 5.3,
—2+44
(7.8) DO < elx ™21, Xl < 1/2.

Therefore, switching to polar coordinates,

R

(7.9) / ID,h(x)]"T(x) dx < ¢ f PR 2 g o
B, 0

provided 7 < 4,/(2-4,).

For the uniqueness assertion, apply the extended maximum principle Theo-
rem 2.1 to the difference of any two functions A, , h,. Then h —h, =0 on
B, — {0}, and by continuity, 4,(0) = h,(0). O

Corollary 7.3. Corollary 5.6 holds in the cases > 0.
Proof. Use the estimate (7.8) and

IDA(x)| < clx|™' sup |A(z)| < Clx|”'™
1

xeBmI/2

in place of (5.10) and (5.11) in the proof of Corollary 5.6. 0O

8. POLAR, RECURRENT CASE

It remains to prove Theorem 2.3 in the case u =0.
Define d and u by (3.7) and (3.9). Let

B1) Vi={=(,0:r<2e’,  i=...,-2,-1,0,1,2,...,
sothat V,CV,,  ,andif ye F,=0V,, u(y)=ilog2.
Theorem 8.1. There exists a constant ¢ such that

I(x) < (1 + |logx|)x|""? ae. on B, .

Proof. As in the proof of Theorem 7.1, we modify the proof of Theorem 4.7
by writing: if z€ F,_,, i<i,-35,

Pz(aH3 < aiz) = Pz(u(X,) hits (i + 3) log 2 before hitting i, log 2)

(8.2) i —(i+4) -1
=4 - <]- ]
leading to
(8.3) H <c(1+i))G,we’
and
2-d _ d
(8.4) I(z)dz < c(1+|log y))ly|” "wye . O
B,(y)

Let f be bounded and continuous on 9B, ,
(8.5) h(x) = Exf(Xrl) )
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Theorem 8.2. h(x) defined by (8.5) satisfies (2.8)(1)-(v). There is at most one
function h satisfying (2.8)(i)-(v).

Proof. The proof is identical to that of Theorem 7.2, except (7.9) becomes

R
(8.6) / 1D ()T (x)dx < ¢ / T M og P dr < o0,
By 0

provided 7<46,/(2—-4d,). O

Note that Corollary 7.3 includes the case i = 0 in its statement.
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