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THE DIRICHLET PROBLEM 
FOR RADIALLY HOMOGENEOUS ELLIPTIC OPERATORS 

RICHARD F. BASS 

ABSTRACT.The Dirichlet problem in the unit ball is considered for the strictly 
elliptic operator L = C a,, D,j ,where the a,j are smooth away from the origin 
and radially homogeneous: a i J ( r x )= a,,(x) , r > 0 , .Y # 0 . Existence and 
uniqueness are proved for solutions in a certain space of functions. Necessary 
and sufficient conditions are given for an extended maximum principle to hold. 

Let L be the second-order strictly elliptic operator defined by 

where the d,, are Cm on R~ - (0) and radially homogeneous: 

The main purpose of this paper is to investigate the Dirichlet problem in the 
unit ball for the operator L . 

There is some question about what one means here by a solution to the 
Dirichlet problem. Of course, one does not expect the solution h necessarily to 
be in c2; one usually wants h to be (locally) in the Sobolev space w ~ , ~for 
some p . But a simple example of Pucci [ l  11 shows that one cannot guarantee 
uniqueness of the solution, even with smooth boundary function, unless p L d , 
the dimension of the space. On the other hand, a recent example of Safonov 
[12] shows, among other things, that one may not have a solution at all unless 
p 5 d / 2 .  In fact, there is an example by Lamberti and Manselli [lo] of an 
operator (although not a radially homogeneous one in a ball) where for each 
p : either no solution exists in W2,' or else infinitely many solutions exist in 
W 2 ' ~  
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We formulate the Dirichlet problem slightly differently. Roughly speaking, 
we replace Lebesgue measure in the definition of w',' with another measure 
that is naturally associated with the operator L .  We consider the Dirichlet 
problem for boundary functions f that are bounded and continuous on dB, , 
the boundary of the open unit ball B, . First of all, we require of any candidate 
for solution h that 

(i) h is bounded and continuous on B, (closure of B, ); 
(ii) h is 	C' in B, - (0) ;

(1.1) 
(iii) Lh - 0 in B, - (0) ; and 
(iv) h = f on dl?, . 

We define T(y) to be the Green function for L for the unit ball with pole at 
0 (a precise meaning of this is given in $2). We then prove (Theorem 2.3) that 
there exists q > 0 ,  depending only on the coefficients of a ,  with the property: 

(1.2) 	 There exists one and only one function h satisfying (1.1) and 

C I D ~ ~ ~ ~ ' + ~ ( x ) T ( x ) ~ x< m for all R < 1 .  
BR i ,  j = l  

Here B, 	 is the open ball of radius R about the origin. 
Another main result of this paper concerns the extended maximal principle 

(cf. Gilbarg-Serrin [4]). We define a parameter p in terms of the ai j  . We then 
show (Theorem 2.1 and Proposition 2.2) that we have an extended maximum 
principle: 

(1.3) 	 supxEBl-{0) h(x) 5 supxEtlBlh(x) whenever h is bounded and 

continuous on El - (0) and Lh - 0 on B, - (0) if and only 
if p > O .  


As a by-product of our methods, we obtain the estimates 


( 1.4) ~h E L~+&(B,),  ~~~hE L
d/2+&

(B,) for all R < 1 .  

The constant E depends only on the coefficients of ellipticity, and Vh denotes 
the gradient of h . It would be interesting to know if the estimates (1.4) hold 
for nonradially homogeneous operators as well. Also, is the formulation of the 
Dirichlet problem given above, using (1.1) and (1.2), applicable more generally? 

The approach taken in this paper is probabilistic, and one of our motivations 
was to compare solving the Dirichlet problem for L to solving the correspond- 
ing martingale problem of probability theory. For the latter, the key step (see 
[I]) is to show that the largest eigenvalue a of a certain positive operator Q is 
simple. For the Dirichlet problem more is required: we must also estimate hit- 
ting probabilities, Green functions, and rate of growth of solutions to Lh = 0 
in terms of a .  

Concerning uniqueness (but not existence), there is a recent result of Caf- 
farelli [15] that should be mentioned. Suppose the aij are smooth except at 0, 
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strictly elliptic, but not necessarily radially homogeneous. Let a: be smooth 
approximations to the a l j  and let h,  be the solution to the corresponding 
Dirichlet problem. Then Caffarelli showed that the functions h, converge, and 
the limit is independent of how the a,, were smoothed. 

In 52 we give some preliminaries and state our results precisely. In $ 3  we 
give a criterion for whether the Markov process associated to L ever hits the 
origin (nonpolar) or not (polar) and prove the extended maximum principle as 
a corollary. We then consider the more difficult of the two cases, the nonpolar 
one. In 54 we estimate hitting probabilities and the Green function, in $5 we 
establish existence of a solution to the Dirichlet problem, and in $6 we prove 
uniqueness of this solution. $7 covers the case where the origin is a polar set and 
the Markov process is transient, while $8 deals with the case where the origin 
is polar but the Markov process is neighborhood recurrent. 

A few words about notation: We will use the letter c , with or without sub- 
scripts, to denote constants whose value is unimportant and may change from 
line to line. B,(x) denotes the open ball of radius r about x ,  B, the open 
ball of radius r about 0. 

Let the operator L be defined by 

where the a,, satisfy 

(i) (strict ellipticity) there exists 	K > 0 such that for all 

( Y , ,. . . , Y d ) E R d 7  X E R d ,  

(ii) (smoothness) each a,, is Cm on Rd - (0) ; and 
(iii) (radial homogeneity) for each 	 i , j , alj(rx) = a,,(x) 

whenever r > 0 ,  x # 0 .  

Let S be the unit sphere. If we write L in terms of polar coordinates ( r  , 8) , 
r > O ,  8 € S , w e g e t  
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where f ,, f,, are the derivatives of f in the radial direction, x = (x, , . . . , xd) 
= ( r ,  8 ) ,  

L, is an elliptic operator on S containing the f, and f,, terms, and M is 
an operator containing the mixed partials f,,. The reason for the strange form 
of the coefficient of f ,  will be apparent shortly. By (2.2)(iii), .J , p , and the 
coefficients of L, and M are independent of r , and we will write y(8) ,  p ( 8 ) .  
By (2.2)(i), g is bounded above and below away from 0. Hence using (2.2)(ii), 
g , p , and the coefficients of L, and M are Cm , and L, is strictly elliptic. 

There is a unique strong Markov process ( P o ,  Of) with state space S and 
infinitesimal generator L, (see [131). Since S is a compact manifold, (Po, Bt ) 
has an invariant probability measure v(d8) on S [3, Example 3.11. Equiv-
alently, let v(d8) be the measure with v(S) = 1 whose density v(8) with 
respect to surface measure is the nonnegative solution to L ~ V= 0 ,  where L; 
is the adjoint operator to L, . 

Define 

We then have the extended maximum principle: 

Theorem 2.1. Suppose p 2 0 .  Suppose h is bounded and continuous on B,-
(0) , C' in B, - {0) , and satisjes Lh = 0 in B, - {0) . Then 

sup h (x)  5 sup h(x) . 
xEB, - {O) X E ~ B ,  

This is complemented by 

Proposition 2.2. If P < 0 ,  there exists h bounded by 0 and 1 , continuous on 
-
B, . C' in B, - {0) , and Lh 10 in B, - (0) such that h(0) = 1 and h 0 
on 8 B l .  

Theorem 2.1 and Proposition 2.2 are proved in $3. 
Consider the martingale problem for L starting at x . This is the question 

of existence and uniqueness of a probability PX on the space of continuous 
paths in R~ such that 

and 
(2.5) 

t 

f (X,) - f (Xo)- / Lf (X,) d s  is a PX-local martingale for each f E C' . 
0 
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Existence follows by [13, Exercise 14.4.31. Since the a,, are Cm on R~ - {O) , 
the proof that pX is determined up to the first time the process hits 0 is standard 
(see [ 131). Uniqueness for the martingale problem then follows by [ 1 ] (although 
the context is slightly different, the proofs of [I ,  $51 apply verbatim). 

By Krylov [7], there exists a function T(x) , the Green function, such that 

(2.6) E O  I,(x,) d s  = ~ ( x )  for all A g B, ,lT' 
 d x  

where 

(2.7) 7, = inf{t: IX,I = r ) .  

One can show that l- is continuous away from 0, but we do not need this. 
Our formulation and solution to the Dirichlet problem is then given by 

Theorem2.3. There exists rl > 0 ,  depending only on K ,  such that if f is con- 
tinuous on aB, , then there exists one and only one function h satisfying 

(i) h is bounded and continuous on B,; 
(ii) h is c2on B, - ( 0 ) ;  

(2.8) (iii) Lh = 0 on B, - (0) ; 
(iv) h agrees with f on dB, ; and 
(v) IBREld 

~ ~ ~ , h l ~ + " x ) I - ( x )d x  < m for all R < 1. ,,., 

For the case when p > 0 ,  it will turn out that (i)-(iv) are sufficient for unique- 
ness. 

As a by-product of our proof of Theorem 2.3, we will get 

Theorem 2.4. There exists E > 0 ,  depending only on K ,  such that if h satisjes 
(2.8)(i)-(v), then 

(2.9) a h  E L d + ' ( B ~ ), Dljh E Ld / 2 + ~
(BR) for all R < 1 . 

Theorems 2.3 and 2.4 will be proved in $5 (existence when p < 0 )  , $6 
(uniqueness when p < O), $7 (the case p > O), and $8 (the case p = 0 ) .  

Let 2: = y(8)-1L . Note that Lh = 0 if and only if Eh = 0 .  The Markov 
process corresponding to 2: may be obtained from that of L by a time change, 
and it is well known (cf. [13, $6.51) that if f is the corresponding Green 
function, f ( x )  = y(8)I-(x). Recall that y is bounded above and bounded 
below away from 0. Thus, in the statements of Theorems 2.1, 2.3, and 2.4, 
there is no loss of generality in replacing L by or, equivalently, in assuming 

2Assumption 2.5. xf,,=, x,a,, (x)x, / lx = i for afl x . 

Assumption 2.5 will remain in force for the remainder of the paper. 
Writing L in polar coordinates, we now get the much simpler expression 

http:14.4.31
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where 
p(8)  = trace a ( x )  - 1 , x = ( r  , 8)  . 

We will use the following two lemmas frequently. 

Lemma 2.6. Suppose D is an open region in R ~ ,T = inf{t: Xt $ Dl,and f 
is bounded on a D  . Then h(x)  = EXf(x,) is continuous in D . 
Proof. This follows by the proof of Theorem 2 in [8]. 

Lemma 2.7. Suppose D ,  T ,  f , and h are as in Lemma 2.6. If 0 $ D ,  then 
h is Cw in D and Lh = 0 there. 

Proof. Fix xo E D and choose E small enough so that B2,(xo), the ball of 
radius 2~ about xo , lies in D . Let Sr = inf{t: Xt $ Br(xo)) .  By the strong 
Markov property, h(x)  = Exh(xSE)if x E B,(x,) . 

By Lemma 2.6, h is continuous in B,(x,) . Let u(x) be the solution to the 
Dirichlet problem for L in B,(x,) with boundary function h . Since the a,, 
are uniformly Cw on B (x,) , it is well known [5, Chapter 61 that u is C"

2, -
in B,(xo) , continuous on B,(xo) , and Lu = 0 in B,(xo) . By Ito's formula, 
u(XtAsr)is a martingale for r < E . So 

Using the boundedness of u on B,(x,) , let t -+ cc , then r -+ E to get 

Therefore h(x)  is C" and Lh = 0 in the interior of B,(x,) . Since x, was 
arbitrary, this completes the proof. 

Let (PX, Xt) be the unique solution to the martingale problem for L starting 
at x . We will use repeatedly the fact that (PX, X,) forms a strong Markov 
process [13, $6.21. 

In this section we give a criterion in terms of p for whether X, hits the origin 
in finite time or not. We use this to prove the extended maximum principle. 

We begin by expressing (PX, X,) in polar coordinates (cf. the skew product 
decomposition of [14]). Fix x = ( r ,  8 ) ,  and write Xi = ( x i ,  g,) . Recall that 
if oiJ(x) is a square root of a,,(x) , we can write 

for some d-dimensional Brownian motion in ^W (see [13]). 
It follows by Ito's lemma, then, that itsolves 
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up until the first time IX,I = 0 and that ( P " , ~ ) ,8,) solves the martingale 
problem for rP2L, starting at ( r  , 8) . Here is a standard one-dimensional 
Brownian motion. 

Now let (R, , 8,) be the time change of ( i t ,  8,) defined by 

where 

Then, up until the first time of hitting 0, R, solves 

where W, is a standard Brownian motion. 
Let 

(3.4) 

The equation (3.3) is linear in R , hence 

(3.5) R, = r exp(W, + A,) 

Also, note that ( P " ~ ~ ' ,8,) solves the martingale problem for L, on S start-
ing at 8 .  Since L, is smooth and strictly elliptic, S is a smooth manifold, 
and the coefficients of L, depend only on 8 ,  there is at most one solution to 
the martingale problem for L, on S starting at 8 .  We denote it by P o .  By 
[13], ( P o ,80  forms a strong Markov process with state space S .  

Theorem 3.1. For each 8 , 
o(a) if ji > 0 ,  W,+ A, -+ +cc, P -a.s.; 
o(b) if p < 0 ,  W,+ A, -+ -cc , P -a.s. 

Proof. A, is an additive functional of 8 , ,  and by the ergodic theorem (see [2] 
or [3]), At/t -+ p , Po-as. 

Suppose ji > 0 .  If c > 0 ,  it is well known that W, + ct -+ +cc , a.s. as 
t -+ cc . Given E , there exists to such that 

P'(A, 5 i p t  for some t > to) < E 

Then for each N 

which proves (a). 
The proof of (b) is similar. 

Let 

(3.6) 

We use Theorem 3.1 to get the criterion: 
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Theorem 3.2. Suppose x # 0 .  
(a) If p > 0 ,  P " ( T ~  < co) = 0 and P"(\x,\ + co as t -+ cc) = 1 ;  
(b) i f p < O ,  P X ( r 0 < c o )  = O  and PX(Ix,I+cc as t + c c ) = O ;  
(c) ifp= 0 ,  PX(rO < co) = 0 ,  PX(IX,I + co) = 0 ,  forall r ,  PX(r r< co) = 1. 

Proof. Write x = ( r ,  8 ) .  If p > 0 ,  then W, + A, -+ +co, a.s. by Theorem 
3.1. Since log IR, I = log r + ( W, + A,) , then inf, log I R, I > -cc , a.s. so ro = co , 
a.s. and lim inf,-" log lR,I = +cc , or IR,\ -+ cc as t -+ co . Part (a) follows 
easily. 

Suppose now p < 0 ,  and let E > 0 .  Since W,+ A, -+ -co , a.s., we can find 
No such that for all M 

PO(logr+ W; + A, hits - M before hitting N) > 1 - E 

whenever N > No. Since the time change that gives IX,I = it from R, is 
nondegenerate (i.e., dB,/dt is bounded below) when R, > e-M > 0 ,  we have 

P"(IX,I hits eLM before hitting eN) 2 1 - E . 
Let M + cc to get ~ " ( r ,  < T,,*(~))2 1 - E , then let N + cc , then E + 0 .  
The second part of (b) follows from the first part and an elementary renewal 
argument. 

Recall that (P" 8,) is the process on S with generator Ls . Since 

it is well known (see [2]) that Eep(8,) goes to 0 exponentially fast, uniformly 
in 8 , a s  t + m .  

Let 

Since p(8) is C" and the coefficients of Ls are C" and strictly elliptic, d (8 )  
is C" and 

(3.8) Lsd = - p .  

Set 

Then applying (2.10), noting that the u,, terms are 0, and using (3.8), 

Lu(x) = 0 ,  x # 0 .  

Hence U, = u(XtAT0)is a local martingale. 

By [I ,  Lemma 5.11, PX(r r  < co) = 1 if 1x1 < r . So U, is certain to exit the 
interval [-M, N] . Then, since U, is a time change of Brownian motion, 

P"(u, hits -M before hitting N) = ( N  - u(x)) / (M+ N) . 
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Using the definition of u ,  noting that d(B) is bounded, and letting M -,m 
leads as above to PX(to< m )  = 0 .  

Similarly, holding M fixed and letting N -,m leads to PX(t,< m )  = 1 
for all r > 0 as above. 

A renewal argument shows that PX(Ix,I5 r i.0. as t -, m )  = 1 , which 
implies PX(Ix,I- m ) = O .  

We refer to the cases where p > 0 as polar since 0 is a polar set, the case 
-
p < 0 as nonpolar. 

The proof of Theorem 2.1 is now easy. 

Proof of Theorem 2.1. Suppose P > 0 ,  and suppose h is bounded by M on-
B, - (0) . Let y E ( 0 ,  1) . By Lemma 2.7, the solution to the Dirichlet problem 
in B, - B, with boundary values h is again h , and if ly 1 < x , 

5 sup h(y) + MP"(~,< 7 , ) .  
YEOB, 

Let g -,0 ;by the continuity of paths, limy_, ~ " ( 7 ,< 7,) = PX(r0< 7 , )  = 0 ,  
using Theorem 3.2. 

Proof of Proposition 2.2. Let h(x) = P" (7, < 7,)  . By Lemmas 2.6 and 2.7, h is 
c2in B, - {0) and Lh = 0 there. (Here D = B, - (0) , f (0) = 1 , f = 0 on 
dB, .) It remains only to show (i) limx,o h(x) = 1 and (ii) lim,,, h(x) = 0 
if y E 8 B 1 .  

The first follows from scaling (see [I ,  proof of Proposition 5.31): if x = ~y 
where lyl = 1 , then 

as E - 0 .  
For the second, by the strong Markov property, h(x) = E X ( h ( x  ) ; 7, < 7,  ) , 

7~ 

where g = 112 < 1x1. The coefficients of L are smooth on B, - B, . So the 
solution to the classical Dirichlet problem for L with boundary values h on 
dB, and 0 on dB, is continuous up to and including the boundary [5, Chapter 
61. By Lemma 2.7, the solution is E X ( h ( x  ) ; 7, < r1)+EX(0; 7,  < 7,) = h(x) . 

7~ 

Hence h is continuous on dB, . 

In the next three sections we consider the nonpolar case: < 0 ,  which 
is the most difficult. First we introduce a positive operator Q ,  examine the 
eigenvalues of Q ,  and then estimate the probability of hitting 0 and estimate 
the Green function with pole at 0 in terms of the largest eigenvalue of Q . 
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We suppose throughout this section that ii < 0 .  

For b E (0 ,  1) , let Qb be the operator on functions on S defined by 


where r o ,  7, are defined by (3.6). We write simply Q for 

Proposition 4.1. Let b E (0 ,  1) . Fix xo E S ,  and let n(dy) = Qb(xO, dy) = 

pbX0(x, E dy ; 7, < to). Then 

(a) Qb is a bounded operator on L2 (d n) ; 
(b) Qb is a bounded operatorporn L1 (dn)  to CB(S), the continuous functions 

on S ;  
(c) the largest eigenvalue Ab of Qb is positive and strictly larger in absolute 

value than any other eigenvalue of Qb, Ab < 1, and the corresponding eigen- 
function eb is continuous and strictly positive. 
Proof. By the Harnack inequality of Krylov-Safonov [9], there exists a constant 
6' depending only on K of (2.2) and b such that if f :  S + [0 , m), 

(Recall Lemma 2.7.) Consequently, Qb(x , dy) << n(dy) , and the density 
qb(x,  y)  = Qb(x ,  dy)/n(dy) may be taken to be bounded by 8-I . 

~ i n c k  

Qbf(x)= / f ( y ) Q b ( x ,  dy) = / f ( y ) q b ( x ,  Y ) x ( ~ Y )  

and / / ~ ( x ,y ) ' n ( d x ) n ( d ~ )< e-', 
S S 

(a) follows by Cauchy-Schwarz. 
To prove (b), suppose f E L1(dn)  and f > 0 .  Then Qb f(xo)  < 1 f1lLlrm,. 

By (4.2), Qb f (x) 5 8-' ebf(x,) for all x E S , which proves Qb f is bounded 
on S .  

By the Harnack inequality of Krylov-Safonov again, if x E S and E is taken 
small enough so that B2,(bx) c B, (0) , there exists a constant c (depending on 
E and K )  such that h(y) = E Y ( f ( X 7 ) ;7, < to)  5 cQbf(x) for y E B,(bx). 
By the strong Markov property, 

where 
S, = inf{t: X, $ B,(xo)). 

So by Lemma 2.6, Qb f is continuous. 
The operator Qb is strongly positive and compact; for a proof see [I ,  $51. 

Therefore, just as in the argument there, assertion (c), except for the Ab < 1 
claim, follows by a the Krein-Rutman theorem. 
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Pick x such that eb(x)E supyeb(y). Then 

Since eb is strictly positive and p b X ( r l< ro) < 1 by the proof of Theorem 3.3, 
2 b ~ b x ( ~ l < ~ o ) < l .  

2We normalize eb so that Js e, d n  = 1 . 
Although we know 2, > 0 ,  we need for use in 55 to show that it is greater 

than a constant depending only on K and b . 
Corollary 4.2. There exists a constant c depending only on K and b such that 
A, L C .  

Proof. Analogously to the last paragraph of the proof of Proposition 4.1, Ab 2 
inf,,, pb'(r , < rO). But pbx(r1< ro) can be bounded below by a constant 
depending only on K and b by the Stroock-Varadhan support theorem [6, 
Exercise 6.7.51 (cf. [1, proof of Theorem 5.41). 

Let 

and let 

Proposition 4.3. (a) u(x) = E X ( d ( x T) ; r ,  < .so), x E B, ; 

(b) u(XlAT0)is a P'-local martiniale for all x ; 
(c) d is bounded above and bounded below away from 0 ; d is c"O on S . 

Proof. Suppose b E ( 0 ,  1) . By the strong Markov property and radial homo-
geneity, ( Q ~ ) "= Q,. , and so Qb.eb.=Aie,. By the Krein-Rutman theorem [6, 
Theorem 6.31, Qbn has only one strictly positive eigenfunction, hence ebn is a 
constant multiple of eb, and A,, = (A,)" . 

Now suppose 1x1 = ( 1 / 2 ) ~ ' " ,  m ,  n positive integers, and let b = 1x1. 
Qbn= Q,,,,,. ,hence A; = and Qbd = A, d . Therefore 

This proves (a) for 1x1 of the form (112)' , s rational. E X ( d ( x T) ; r ,  < 7,) 

is continuous in B, - (0) by Lemma 2.6, and u is evidently coniinuous as a 
function of 1x1 . So (a) holds for x E B, - (0 ) .  
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Now 
E ~ ( ~ ( x , , ) ;r l  < ro)l 5 l d l l ~ ~ ( r ,< ro) -- 0 as x + 0 

by the argument in the proof of Proposition 2.2. So (a) holds for x = 0 .  
By Lemma 2.7, u(x) is C" in Bl - (0) and Lu = 0 there. So 

(4.6) 0 = Lu = raP2[a(a- 1)d / 2  + a(2p  + 1)d / 2  + Ls d + a M ( r d ) ]  

for r E (0 ,  1) . But then the expression inside the brackets, which is indepen-
dent of r ,  is 0 for all 8 ,  hence (4.6) holds for all r > 0 .  (b) then follows by 
Ito's lemma. 

We have already mentioned that u is C" in Bl - ( 0 ) .  This shows d is 
smooth. The boundedness part. of (c) follows immediately from Proposition 
4.l(c). 

Corollary 4.4. d(8)  is bounded above and below by constants depending only on 
K . There is a modulus of continuity for d (8)  depending only on K . 
Proof. Since d = ell, is normalized to have L' norm one with respect to a 
certain measure, there is at least one point x for which d ( x )  I 1 .  Hence 
Q d ( x )  l All, ,and by (4.21, 

- 1  -1 
sup d(y) = ( A , ~ , ) - ~ S ~ PQ ~ ( Y )5 ( A l l 2 )  8 Q d ( x )  5 8-I 
YES YES 

Since there must be at least one point at which d is 2 1 , the lower bound is 
similar. The assertion about the modulus of continuity follows from Lemma 
2.6 and its proof. 

The Q = Ql12 that we have defined here is, by scaling, the same as the Q 
defined in [I]. Williams [14] has given a quite different method of constructing 
a positive solution to Lu = 0 .  Our construction sheds additional light on hers, 
and vice versa. 

Having constructed the function u ,we can now begin doing some estimation. 
Let 

(4.7) y = {x:  u(x) ~ 2 ' ) ~i = .. .  , -2,  -1, 0 ,  1, 2 ,  . . .  , 
(4.8) F , = d y ,  
and 

(4.9) a, = inf{t: X, E F,) .  

Proposition 4.5. There exist constants cl , c, > 0 such that 

clIxIUi p X ( r l< .rO)l c21xla 
for x suflciently small. 
Proof. Since d (8)  is bounded below there exists i, such that y21Bl . Then 

p X ( r 1< 7,) 2 ~ " ( a ,< r,) = pX(u(x, )hits 212 before hitting 0) 

= u(x)/2122 C1 Ixla, 
since u(X,) is a martingale. 
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Similarly, there exists c, such that TI G B, , and then 

p X ( r 1< rO)5 pX(oi< ro)  = p X ( u ( x i )hits 2 i  before hitting 0) 

As a corollary, we have 

(4.10) lim (logpX(z ,< rO)/log1x1)= a .  
1x1-0 

On the other hand, it is possible to estimate pX(z l  < ro)  in terms of the 
probability that log Ixl+ W,+A, ever hits 0 (see 93). Although this does not quite 
fit into standard large-deviations theory, one might be able to get asymptotic 
estimates by techniques from that theory; tying p(0)  and a together would 
answer some questions raised by Williams [14] in a similar context. 

Lemma 4.6. a I 1 . 
Proof. From (2.10) and Assumption 2.5, p(0)  2 -+ . 

From (2.10) and Ito's formula, I X,I is a submartingale whose martingale part 
is a Brownian motion, . Hence, for x small, 

0 -p X ( z l< 7,) 2 P (W,+ 1x1 hits 1 before hitting 0) = 1x1. 

By Proposition 4.5, 

~21x1~L 1x1 

for all 1x1 sufficiently small, which implies a 5 1 . 

We now come to the main estimate of this section. 

Theorem 4.7. There exist constants c, and c2 such that 

and 
2-d-a

Ux)  2 clIxl a.e. on some neighborhood of 0 .  

Proof. Let 

where g, is the Green function for A,  with pole at x . Since L is smooth on 

I.;.:~, g is continuous in x and y except at x = y . Hence Gi < cc . 
A! 

Suppose y E y+, - L'-, and let B,(y) be the ball of radius E about y , 
E sufficiently small so that B2,(y) y.+3- T.;_, . We will write g,,(x, B,(y)) 

for SBeIY,g,, (x, i)d r  . Using scaling with the factor 2- l'" (cf. [I ,  Proposition 
5.3]), the expected amount of time spent in B,(y) before leaving A, starting at 



606 	 R.F.BASS 

x is 2-'la 	 startingtimes the expected amount of time spent in ~ ~ l ~ , ( 2 ~ ~ ~ ~ )  

at 211"x before leaving A,+,  , or 

gA,( x ,B,(Y??= 2-2iagA,+, (21iex,  . 

Dividing by the volume of B,(y )  , letting e + 0 ,  and using the continuity at 
Y ,  

(4.12) g,, ( x,y )  = 2
-2ja 

2
d / e  

g, ( 2 l I 0 x ,  21iay) . 
1 + 1  

Hence 

(4.13) 	 G .= 2(d-2)/* 
I Gi+1 . 

Fixing i2 so that B ,  C y2-, and then induction gives 

Now let 

where 

g ( x , B,(Y??= EX d~ rI B ~ ( ~ ) ( X $ )  

q2is-defined by (4.91, and B2,(y)  i: y+2- y- ,  for all y E y+,- 6 . 
Fix y E ?+,- ?,  i < i2- 5 .  Starting at z E FiP3,one is certain to hit FiP2 

before entering B,(y)  , and so by the strong Markov property, g ( z ,  B , (y ) )  5 
Hi" . 

If z E F,+4, 

pZ(o i+,< o. ) = p z ( u ( x 1 )hits 21+3before hitting 2j2)
(4.16) 	 ' 2  

= (2'2 - 2'-4)/(2i2 - zi+,) 5 1 -

So by the strong Markov property, g ( z ,  B , ( y ) )  < ( 1  - c2')HlE if z E Fi+, 
Let TI= inf{t: XI  4 A i )  . Then just as in (4.161, 

Using the strong Markov property again and (4.17), if x E F,-, u F,+, , 

-< w ~ ~ -~ G ~+ ~ " ( 1  ~ 2 ~ ) .  

Here ad denotes the Lebesgue measure of the unit ball. 
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Holding i fixed but taking the sup over y E ?+,- I: , x E Fi-, u Fi+3, 

or, from (4.141, 

Since a12> 7, and y "  5 c u ( y )5 c2"' if y E F',, - y., the strong Markov 
property yields 

Since E can be arbitrarily small, this yields the upper bound. 
Choose i ,  so that yl+,i B ,  . Replacing i2 by i l  , replacing sup by inf in 

the definitions of GI and H: , noting Gi > 0 ,  and reversing the inequalities 
in the above argument gives the lower bound. However, the argument is valid 
only for y E y , which is why the lower bound holds only for a neighborhood

I 

of 0. 

In this section we establish the existence part of Theorem 2.3 in the case 
-
y < 0 .  Suppose f is bounded and continuous on d B l  . 

Let 

(5.1) h ( x ?= E X f(x,~?. 
Recall the definition of I.; , F, , and ai in (4.7)-(4.9). Write Osc, h for 
sup, - inf, h . 

Proposition 5.1. There exists y < 1 depending only on K such that 

Osc h 5 y Osc h , provided I/,+,i Bl  . 
?+I 

Proof. By taking a linear transformation, we may suppose that inf h = 0?+I 
and sup h = 1 . Since h is continuous in Vj+,by Lemma 2.6 and h ( x )= V,+1 

E " ~ ( X  ) for x E V,+, by the strong Markov property, we have inf h = 0 ,  
']+I F j + ~  

supFJ+lh = 1 . 
Since h ( x )  = E " ~ ( x) for x E V,  , Osc h 5 Osc h ,  and the proposition 

'1 V,  FJ 

will be proved if we show 

Osch 5 i y  0 s c h .  
FJ FJ+1 

Fix jo . In view of Corollaries 4.2 and 4.4 and the definition of u ,  the 
minimum distance between F and FIo+, is bounded below by a constant 

10 
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depending only on K . So by the Harnack inequality of Krylov-Safonov [9], 
there exists 8 depending only on K such that for j = jo , 

By scaling, (5.3)holds for all j , with 8 independent of j . 
Fix xo E F, . By looking at 1 - h if necessary, we may suppose 

where 
+ 

A = {Y EFj+l : h ( ~ ?> t ) ,  A- = { y  E F,+, : h ( y )5 4 )  
For any x E F, , Ps(ro < a,,,) = P X ( u ( x , )hits 0 before hitting 2"') = 12 ' 

So 

4 s )= E ~ ~ ( x ~ ~ + ~ )= E ~ ( ~ ( X , ~ + ~ , ~ ) ;o,+, < 7,) + h(o)ps(7 ,< ~ ' + , )  
( 5 . 5 )  < P ~ ( O , + ,  < r,) + h(0)p X ( r o< oj+,)< ) + )h ( 0 ). 
But also, 

h ( x )= E X ( h ( x  ) ;  o,+, < T ~ )+ )h(O)
OJ+I 

> $ P ~ ( X , ~ + ~E A+ ; o,,, < r,) + jh(0)  

(5.6) >_ f 6 ~ ' ( ~ ~ ~ +E A'; a,+, < r,) + fh(0)  

>_ 6P ~ O ( ~ , + ,< r0)+ 4h ( 0 )  
= i e  + p ( o ) .  

Comparing (5.5)and (5.61, we have 

o s c h  I;- Be = ; ( I - ; e l ,  
FJ 

which gives (5.2)with y = 1 - ; 8 .  

Proposition 5.3. There exists 6 ,  > 0 depending only on K such that 

Proof. Pick i ,  so that 5 G B,  . Suppose r is sufficiently small of that B, G 
I 

. Given r , let j be the smallest integer such that B, G 7. Then 2' < c r L '  
I 

and 

Osc h < Osc h < ( ty ) i l - '  0sc  h g c ( iY)-' 0 s c  h 
Br 7 71 Bl 

where 6 ,  = - In y / In 2 
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Since Osc, h I 211f 1 1  follows from (5.l ) ,  this proves the proposition for 
r sufficiently ;mall. Since OxBrh I OscBIh 4 211f 11, by taking c larger if 
necessary, we have the proposition for all r < 1 . 

Proposition 5.3. There exists 6, > 0 depending only on K such that 

Proof. This is similar to the preceding, but a little simpler. By the Harnack 
inequality, pick 0' such that 

Fix x o ~ d B r ,r I i , a n d s u p p o s e  sup h = 1 ,  inf h = O , a n d
8 4 ,  8 4 ,  

with 
A + = { y ~ d B , , : h ( y ) > $ ) ,  A - = { y ~ d B , , : h ( y ) I i )  

Then if x E d B r ,  h(x) I 1, and by (5.7) and scaling, 

Hence 

Proposition 5.3 follows from (5.8) similarly to the proof of Proposition 
5.2. 

Corollary 5.4. There exists 6 depending only on K such that 

Proof. Let 6 = (1 A 6,)6,/2. If a < 6,/2, the corollary follows by Proposition 
5.3. If a 2 6,/2 , it follows by Proposition 5.2. 

Theorem 5.5. h(x) defined by (5.1) satisfies (2.8)(i)-(v). 

Proof. The boundedness of h is clear by (5.1). Assertions (ii) and (iii) follow 
by Lemma 2.7. Since h agrees with the unique solution to the Dirichlet problem 
for L on B, -BlI2 with boundary function f on dB, and h on dBll , ,  h 
is continuous at dBl  and agrees with f there (cf. proof of Lemma 2.7). The 
continuity of h at 0 comes from Lemma 2.6, and it remains to prove (v). 

By the bounds on l- from Theorem 4.7 and the fact that h E c2on Bl -{O) , 
it suffices to restrict attention to R < 1/2 . By adding or subtracting a constant, 
we may suppose h(0) = 0 .  Then if x E BR, h solves the Dirichlet problem for 
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L on the ball B I x l i 2 ( x )with boundary function h by Lemma 2.7. So h E C 2  
there, and it is well known [ 5 ,  Chapter 61 that 

The constant c may depend on the smoothness of the a i j .  
But then 

-2+a+6
(5.10) J D i j h ( x )4 clx-' sup i h ( x )4 clx-' Osc h 5 clxl , 

~EB,l,l,2 B31Xll2 

by Corollary 5.4 and the fact that h ( 0 )= 0 .  
Estimate (5.10) and Theorem .4.7 give, changing to polar coordinates, 

Recalling Lemma 4.6, this gives ( v )if q < 6 / ( 2- a - 6 ) . 

Corollary 5.6. There exists e > 0 depending only on i c  such that 
d/2+&v h  E L ~ + & ( B ~ ) ,~ , , hE L ( B ~ ) ,  R < I .  

Proof. The second assertion follows by integrating estimate (5.10) in polar co-
ordinates. Just as we obtained (5.10),we get 

-1+a+S
(5.11) - /D,h(x)l5 ~ 1 x 1 - '  sup h ( z ) l  5 ~1x1 

~EB3lXl/2 

Integrate (5 .1  1 )  in polar coordinates to get the first assertion. 

6. UNIQUENESS-NONPOLARCASE 

In this section we complete the proof of Theorem 2.3 for the case < 0 by 
showing uniqueness. We first show uniqueness for the Dirichlet problem for 
y. , where i l  is chosen so that 7. c B,  . 

I 

Proposition 6.1. Suppose f is a bounded continuous function on Fl . Suppose 
v ,  and v2 are two bounded continuous functions on y. . agreeing 'with f on 

Fll. C 2  in T I- { 0 ). satisfying L v j  = 0 on y. - ( 0 ) .  j'= 1 , 2 .  and satisfying 
hypothesis (2 .8)(v)for some R < 1 . Then v l  = v2 on I:. 

I 

Proof. By considering v = v l  - v 2 ,  we may suppose f = 0 .  Since L has 
smooth coefficients on B,  - ( 0 ), if v ( 0 )= 0 ,  then by the usual maximum prin-
ciple, v = 0 on y. . We suppose then that v ( 0 )# 0 and obtain a contradiction. 
By multiplying by1aconstant, we may suppose v ( 0 )= 1 . 

Consider w ( x )= p X ( z o< a, ) . By Proposition 2.2, proved in 53, v - w is 
bounded and continuous on y , ( v  -w)(O)= 0 ,  v -w = 0 on t;;,, v -w is 

2C on - { O )  , and L ( v  - w )  = 0 there. By the usual maximum principle, 
v = w  on ? .  

I 
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If x = ( r  , 8 )  E I: is such that u(x) = /3 , then 
I 

* 

2" - u(x)
w ( x )  = px( r0< 0 , )= px(u(x , )hits 0 before hitting 2'1)= 

(6.1) 2'1 
P = 1 - = 1 - c P =  1 - C U ( X )  = 1 - c r a d ( 8 ) .
2 

But then Drrw(x)= ~1x1"-'d(8)2 c x " - ' .  And 

sincebyLemma4.6,  a 5 1 ,  hence d - 1 + ( 1  + ~ ) ( a - 2 ) + 2 - a - d  < -1 .  
This contradicts the assertion that v = w satisfied (2.8). Hence the proof is 
complete. 

We now complete the proof of Theorem 2.3 in the case p < 0 .  

Theorem 6.2. Suppose v > 0 .  There is at most one function h satisfying hy-
potheses (2.8)(i)-(v). 
Proof. Just as in Proposition 6.1, the theorem will be proved if we show w (x )  = 

px(z0< z, ) does not satisfy (2.8)(v). 
Consider the Dirichlet problem on with boundary function w . Let 

I 

h (x)  = E " W ( X ~ , ) .If ro is taken small enough so that BroG , then by the 

strong Markov broperty h (x )  = E x h ( x T  ) By applying scaling to Theorem 
'0 

5.5, h satisfies (2.8)(i)-(v) if B, is replaced by Bro. Also, since h solves the 
Dirichlet problem on I:-Bro with boundary function w on F, , h on aBr0, 
h is one solution to thel~ir ichletproblem on satisfying thelhypotheses of 
Proposition 6.1. Moreover, by Corollary 5.4, the;e exists S > 0 such that 

Suppose now that w(x)  satisfies (2.8)(v). By the proof of Proposition 2.2, 
w also satisfies the hypotheses of Proposition 6.1. Therefore, by the conclusion 
of Proposition 6.1, w = h on I:. 

But by Proposition 4.5, we lcnow 1 - w(x)  2 ~1x1"for x small. Since 
w (0) = 1 , this contradicts (6.2). Therefore w cannot satisfy (2.8)(v),which 
proves the theorem. 

7. POLAR,TRANSIENT CASE 

In this section we prove Theorem 2.3 in the case p > 0 .  The proof is 
considerably easier in this case. 

For b > 1 ,  define 
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Completely analogously to the p < 0 case, Qb is strongly positive and com-
pact. The eigenfunction d (0 )  corresponding to the largest eigenvalue of Q is 
strictly positive. As in $4, there exists cr > 0 such that 

(7.2) u ( x ) = ~ ~ ( d ( ~ ~ , ) ; r , < r n ) = r - ~ d ( ~ ) ,x = ( r , O ) ,  r > l ,  

is C" and solves Lu = 0 in Bf , but now note the exponent of r. in (7.2) is 
negative. Arguing as in (4.6), 

-a(-a - l ) d / 2  - cr(2p + l ) d / 2  + Lsd - a M ( r d )  = 0 

for all 0 ,  hence Lu(x)  = 0 for all x # 0 .  Therefore u(X,,, ) = u(X,) (since 
z, = co , as . )  is a local martingale. 

Let 

(7.3) y = {x: U(X)  2 2-'1, i =  . . . ,  - 2 , - l , O ,  1 , 2  , . . . ,  
so that we still have I.;.G I.;+,. Define F, and a, as in (4.8), (4.9). 

Theorem 7.1. There exists a constant c (depending on a ) such that 

~ ( x )j c x 2 - d  a.e. on B, . 
Proof. The proof is very similar to that of Theorem 4.7, with one exception. If 
z E Fl+4 ,  i 5 i2 - 5 ,  / 

-(i+3)P"(cT,+~< ai ) = p Z ( u ( x , )hits 2 before hitting 2-12) 

(cf. with 1 - c2' in (4.16)). Just as in (4.17), px(xT,E F,,,) is still bounded 
above and below by constants independent of i . 

With (7.4), (4.19) becomes 

(7.5) H,' 4 C G , W , & ~  4 ~2i(2-d)/a d 
Wd 

and (4.20) becomes 

which yields the desired result. 

Note that Proposition 5.3 makes no use of the hypothesis < 0 ,  and hence 
the assertion is valid in the cases p 2 0 . 

Suppose f is bounded and continuous on dBl . Let 

(7.6) h (x )  = EXf(X,, 1 .  
Theorem 7.2. h(x)  defined by (7.6) satisfies (2.8)(i)-(v). There is a t  most one 
function h satisfying (2.8)(i)-(v). 
Proof. Following the proof of Theorem 5.5, (2.8)(i)-(iv) hold. We may suppose 
h(0) = 0 and R < 112, and then exactly as in the derivation of (5.lo), 

D , , h ( x )  j clx-' Osc h .  
B31x1/2 
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Applying Proposition 5.3, 

Therefore, switching to polar coordinates, 

provided q < 6,/(2 - 6,) . 
For the uniqueness assertion, apply the extended maximum principle Theo-

rem 2.1 to the difference of any two functions hl , h, . Then h, - h, = 0 on 
B, - (0)  , and by continuity, h, (0) = h2(0). 

Corollary 7.3. Corollary 5.6 holds in the cases ji 2 0 .  

Proof. Use the estimate (7.8) and 

in place of (5.10) and (5.1 1 )  in the proof of Corollary 5.6. 

It remains to prove Theorem 2.3 in the case p = 0 .  
Define d and u by (3.7) and (3.9). Let 

I -d(B)
(8.1) 6 = {y = ( r ,  0 ) :  r < 2 e } ,  i =  . . . ,  - 2 , - l , O ,  1 , 2  , . . . ,  
so that g ?+,, and if y E F, = d ?., u(y) = i log 2 .  

Theorem 8.1. There exists a constant c such that 

~ ( x )< c( 1 + 1 logx)lx12-d a.e. on B, . 
Proof. As in the proof of Theorem 7.1, we modify the proof of Theorem 4.7 
by writing: if z E Fi+4,  i < i, - 5 , 

P'(o,+~< IT,,) = P'(u(x,) hits ( i  + 3) log2 before hitting i, log2) 

leading to 

(8.3) H~' < ~ ( 1+ ~ ) G , W ~ E ~  

and 

(8.4) 
dT(Z) d z  5 C ( I  + I log Y I ) I Y I ~ - ~ W ~ E. 

B, (Y 

Let f be bounded and continuous on dBl  , 

(8.5) h(x)  = ~~f( x ~ ,  
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Theorem 8.2. h(x)  defined by (8.5) satisfies (2.8)(i)-(v). There is at most one 
function h satisfying (2.8)(i)-(v). 

Proof. The proof is identical to that of Theorem 7.2, except (7.9) becomes 

provided q < 6 , / ( 2 - 6 , ) .  

Note that Corollary 7.3 includes the case jl = 0 in its statement. 
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