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Abstract

Let α ∈ (0, 2) and consider the operator

Lf(x) =
∫

[f(x+ h)− f(x)− 1(|h|≤1)∇f(x) · h]
A(x, h)
|h|d+α

dh

for f ∈ C2(Rd), where the ∇f(x) · h term is omitted if α < 1. We
consider the martingale problem corresponding to the operator L and
under mild conditions on the function A prove that there exists a
unique solution.
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1 Introduction

A stable-like process is a pure jump process where the jump intensity kernel
is comparable in some sense to that of one or more stable processes. The
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term was introduced in [3] for processes whose associated operators were of
the form∫

Rd
[f(x+ h)− f(x)− 1(|h|≤1)∇f(x) · h]

dh

|h|1+α(x)
, f ∈ C2(Rd), x ∈ Rd,

and the use of the term was extended in [10] to refer to symmetric Markov
processes whose jump kernels J(x, y) were comparable to |x − y|−d−α for a
fixed α.

In this paper we fix α ∈ (0, 2). For α ∈ [1, 2) we consider jump processes
associated to the operator

Lf(x) =

∫
[f(x+ h)− f(x)− 1(|h|≤1)∇f(x) · h]

A(x, h)

|h|d+α
dh, (1.1)

and for α ∈ (0, 1) associated to the operator

Lf(x) =

∫
[f(x+ h)− f(x)]

A(x, h)

|h|d+α
dh, (1.2)

where A(x, h) is bounded above and below by positive constants not depend-
ing on x or h. For the domain of L we take the class of C2 functions such that
the function and its first and second partial derivatives are bounded. These
jump processes, when at a point x, jump to x + h with intensity given by
A(x, h)|h|−d−α. These processes stand in the same relationship to symmetric
stable processes of index α as uniformly elliptic operators in non-divergence
form do to Brownian motion.

For α ≥ 1 the ∇f(x) · h term is needed to guarantee convergence of the
integral, while for α < 1 the ∇f(x) · h term cannot be present, or else the
jumps of the process will be dominated by the drift.

Processes corresponding to L given by (1.1) or (1.2) were considered in
[9] and [16], where Harnack inequalities and regularity of harmonic functions
were proved. It is natural to ask whether there exists a process corresponding
to L, and if so, is there only one.

We view this question as a martingale problem. Let Ω = D([0,∞)), the
set of paths that are right continuous with left limits, endowed with the
Skorokhod topology. Set Xt(ω) = ω(t) for ω ∈ Ω and let Ft be the right
continuous filtration generated by the process X. A probability measure P is
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a solution to the martingale problem for L started at x if P(X0 = x) = 1 and
f(Xt) − f(X0) −

∫ t
0
Lf(Xs) ds is a martingale whenever f is a C2 function

such that f and its first and second partial derivatives are bounded. The
question to be answered is the existence and uniqueness of a solution to the
martingale problem for L.

Our results on existence are merely an application of techniques used in [4]
and the novelty in the current paper is a sufficient condition for uniqueness.
Let η > 0 and set

ψη(r) = (1 + log+(1/r))1+η, r > 0. (1.3)

We require continuity in x of the function A(x, h), with more continuity the
smaller h is. More specifically, let

A(x, h) = A(x, h)ψη(|h|). (1.4)

Our main assumption is that A(x, h) be continuous in x, uniformly in h.
We assume

Assumption 1.1 (a) There exist c1, c2 > 0 such that c1 ≤ A(x, h) ≤ c2 for
all x and h.

(b) There exists η > 0 such that for every y ∈ Rd and every b > 0

lim
x→y

sup
|h|≤b
|A(x, h)− A(y, h)| = 0.

Part (a) of Assumption 1.1 may be regarded as the jump process equivalent
of uniform ellipticity.

We then have

Theorem 1.2 Suppose Assumption 1.1 holds and x0 ∈ Rd. Then there is
one and only one solution to the martingale problem for L started at x0.

As we alluded to above, existence is already known and can in fact be
proved under slightly weaker hypotheses. Some other generalizations are
possible; see Remarks 4.7 and 4.10. Our theorem also extends some of the
results obtained in [12]; see Remark 4.9.
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We do not know if our theorem is still true if A is replaced by A in
Assumption 1.1. We point out that uniqueness for the martingale problem
for jump processes does not always hold; see [2, Section 6]. We suspect,
based on the example of [15], that the continuity of A cannot be dispensed
with.

In additions to the papers [9] and [16], which consider the processes de-
scribed above, a similar model to ours is considered by [12]; see Remark 4.9.
Results for related models can be found in [2], [6], [7], [8], and [10].

In the next section we establish some estimates. An approximation is
given in Section 3 and Theorem 1.2 is proved in Section 4.

2 Estimates

Let B(x, r) = {y ∈ Rd : |y − x| < r}. Let Ck be the functions which
are k times continuously differentiable, Ck

b the elements of Ck such that the
function and its partial derivatives up to order k are bounded, and Ck

K the
functions in Ck that have compact support. We use the probabilist’s version
of the Fourier transform:

f̂(u) =

∫
eiu·xf(x) dx, u ∈ Rd.

For processes whose paths are right continuous with left limits, we set Xt− =
lims<t,s→tXs and ∆Xt = Xt − Xt−. We use the letter c with or without
subscripts to denote constants whose value is unimportant and may change
from line to line.

We suppose throughout the remainder of the paper that Assumption 1.1
holds.

Definition 2.1 We say a collection {Px} of probability measures is a strong
Markov family of solutions to the martingale problem for L if for each x ∈ Rd,
Px is a solution to the martingale problem for L started at x and in addition
the strong Markov property holds: for any finite stopping time T , any Y
bounded and F∞-measurable, and any x ∈ Rd,

E x[Y ◦ θT | FT ] = EXT [Y ], Px − a.s.
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Remark 2.2 We will sometimes work with strong Markov families of so-
lutions, in which case the notation Px is appropriate, and sometimes with
arbitrary solutions to a martingale problem. In the latter case the notation
used for the probability measure is then P.

Proposition 2.3 Suppose r < 1, x ∈ Rd, and P is a solution to the mar-
tingale problem for L started at x. There exists c1 not depending on x such
that

P(sup
s≤t
|Xs − x| ≥ r) ≤ c1t/r

α, t > 0.

Proof. Let f : Rd → [0, 1] be a C2 function such that f(0) = 0 and f(y) = 1
if |y| > 1. Let frx(y) = f((y − x)/r). There exists a constant c such that
the first derivatives of frx are bounded by c/r and the second derivatives are
bounded by c/r2. By Taylor’s theorem,

|frx(z + h)− frx(z)−∇frx(z) · h| ≤ c|h|2/r2

and
|frx(z + h)− frx(z)| ≤ c|h|/r.

Suppose α ≥ 1. Then

|Lfrx(z)| ≤
∫
|h|≤r
|frx(z + h)− frx(z)−∇frx(z) · h|A(x, h)

|h|d+α
dh

+

∫
1≥|h|>r

|frx(z + h)− frx(z)−∇frx(z) · h|A(x, h)

|h|d+α
dh

+

∫
|h|>1

|frx(z + h)− frx(z)|A(x, h)

|h|d+α
dh

≤ c

r2

∫
|h|≤r

|h|2

|h|d+α
dh+

c

r

∫
|h|>r

|h|
|h|d+α

dh

≤ cr−α.

Therefore by Doob’s optional stopping theorem, if τr = inf{t : |Xt−X0| ≥ r},
then

P(τr ≤ t) ≤ E frx(Xτr∧t)− frx(x)

= E
∫ τr∧t

0

Lfrx(Xs) ds

≤ ct/rα.
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The case α < 1 is similar; in this case we write

|Lfrx(z)| ≤
∫
|h|≤r
|frx(z + h)− frx(z)|A(x, h)

|h|d+α
dh

+

∫
|h|>r
|frx(z + h)− frx(z)|A(x, h)

|h|d+α
dh

≤ c

∫
|h|≤r

|h|
r

dh

|h|d+α
+ c

∫
|h|>r

dh

|h|d+α

≤ cr−α,

and the remainder of the proof is as in the α ≥ 1 case.

Proposition 2.4 If f ∈ C2
b , then Lf is continuous.

Proof. Let ε > 0 and suppose that α ≥ 1, the case when α < 1 being very
similar. Let δ ∈ (0, 1) and write

Lf(x) =

∫
|h|≤δ

[f(x+ h)− f(x)−∇f(x) · h]
A(x, h)

|h|d+α
dh

+

∫
δ<|h|≤1

[f(x+ h)− f(x)−∇f(x) · h]
A(x, h)

|h|d+α
dh

+

∫
1<|h|≤δ−1

[f(x+ h)− f(x)]
A(x, h)

|h|d+α
dh

+

∫
δ−1<|h|

[f(x+ h)− f(x)]
A(x, h)

|h|d+α
dh.

The first term is bounded by

c

∫
|h|≤δ

|h|2

|h|d+α
dh,

where c depends on f . This is less than ε if δ is sufficiently small. The fourth
term is bounded by

c

∫
|h|>δ−1

dh

|h|d+α
,
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where again c depends on f . This will also be less than ε if δ is sufficiently
small. The second and third terms are continuous in x by dominated con-
vergence and the continuity of A(x, h) in x.

Proposition 2.5 Suppose {Px} is a strong Markov family of solutions to
the martingale problem for L. Let x0 ∈ Rd, suppose r < 1, and τr = inf{t :
|Xt − x0| > r}.

(a) If ε ∈ (0, 1), there exists c1 (depending on ε) such that

inf
z∈B(x0,(1−ε)r)

E zτr ≥ c1r
α.

(b) There exists c2 such that

sup
z

E zτr ≤ c2r
α.

Proof. The proof consists of minor modifications to the proofs of [4, Lemmas
3.2 and 3.3].

Proposition 2.6 Let P be a solution to the martingale problem for L started
at some point x0. If B and C are Borel sets whose closures are disjoint, then∑

s≤t

1B(Xs−)1C(Xs)−
∫ t

0

1B(Xs)

∫
C

A(Xs, u−Xs)

|u−Xs|d+α
du ds

is a martingale with respect to P.

Proof. Suppose B and C are disjoint compact sets, f ∈ C2
b is 0 on B and 1

on C, and ∇f is 0 on B. Then

f(Xt)− f(X0) = Mt +

∫ t

0

Lf(Xs) ds,
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where Mt is a martingale. Since stochastic integrals of predictable processes
with respect to martingales are martingales, it follows that

∫ t
0

1B(Xs−) dMs

is also a martingale. By Ito’s formula

f(Xt)−f(X0) =

∫ t

0

∇f(Xs−) ·dXs+
∑
s≤t

[f(Xs)−f(Xs−)−∇f(Xs−) ·∆Xs].

Hence ∫ t

0

1B(Xs−)∇f(Xs−) · dXs (2.1)

+
∑
s≤t

1B(Xs−)[f(Xs)− f(Xs−)−∇f(Xs−) ·∆Xs]

−
∫ t

0

1B(Xs−)Lf(Xs) ds

is a martingale. Since f ∈ C2 and both f and ∇f are 0 on B, the first term
of (2.1) is equal to 0 and the second term of (2.1) is∑

s≤t

1B(Xs−)f(Xs).

We have

1B(x)Lf(x) = 1B(x)

∫
[f(x+ h)− f(x)− 1(|h|≤1)∇f(x) · h]

A(x, h)

|h|d+α
dh

= 1B(x)

∫
f(x+ h)

A(x, h)

|h|d+α
dh

= 1B(x)

∫
f(u)

A(x, u− x)

|u− x|d+α
du.

Putting this in (2.1), and using the fact that Xs differs from Xs− on a set of
times having Lebesgue measure 0, the last term in (2.1) is∫ t

0

1B(Xs)

∫
f(u)

A(Xs, u−Xs)

|u−Xs|d+α
du ds.

Our result follows by using a limit argument.
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Proposition 2.7 Suppose {Px} is a strong Markov family of solutions to the
martingale problem for L. Suppose g is bounded and measurable and λ > 0.
Let

Sλg(x) = E x

∫ ∞
0

e−λtg(Xt) dt.

Then Sλg is Hölder continuous in x.

Proof. The proof follows by [9, Theorem 4.3] and the arguments leading up
to it. See also [16].

Let z ∈ Rd and let Mz be the operator on C2
b functions defined by

Mzf(x) =

∫
[f(x+ h)− f(x)−∇f(x) · h1(|h|≤1)]

A(z, h)

|h|d+α
dh, (2.2)

where the ∇f(x) · h term is missing if α < 1. Let Rz
λ be the resolvent

for the Lévy process whose infinitesimal generator is Mz and let P z
t be the

corresponding transition operator. We define the Fourier transform of Mz

by setting Cu(x) = eiu·x and M̂z(u) = e−iu·xMzCu(x).

Proposition 2.8 With Mz as above,

Re (M̂z(u)) ≤

{
0, |u| ≤ 1;

−c|u|α, |u| > 1.

Proof.

M̂z(u) =

∫
[eiu·h − 1− iu · h1(|h|≤1)]

A(z, h)

|h|d+α
dh,

with the iu · h1(|h|≤1) term missing if α < 1. So

−Re (M̂z(u)) =

∫
[1− cos(u · h)]

A(z, h)

|h|d+α
dh,

and the assertion in the case |u| ≤ 1 is immediate.
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If |u| > 1, setting u = rv, where |v| = 1 and r ∈ (1,∞),

−Re (M̂z(u)) ≥ c

∫
|h|≤1

[1− cos(u · h)]
1

|h|d+α
dh

= c

∫
|h|≤1

[1− cos(r(v · h))]
1

|h|d+α
dh

= crα
∫
|h|≤r

[1− cos(v · h)]
1

|h|d+α
dh

≥ crα
∫
|h|≤1

[1− cos(v · h)]
1

|h|d+α
dh,

using a change of variables. The integral in the last line is bounded below
by a constant, using rotational invariance, and the result follows on noting
r = |u|.

Corollary 2.9 If pz(t, x, y) = pzt (x−y) is the transition density for the Lévy
process with generator Mz, then for each t, supz ‖pzt‖2 ≤ c(t) <∞.

Moreover, if rzλ(x) =
∫∞

0
e−λtpzt (x) dt and λ ≥ 1, then

|r̂zλ(u)| ≤ c

λ+ |u|α
.

Proof. The Fourier transform of pzt is et
cMz(u), and so

|et cMz(u)| = etRe ( cMz(u)).

With the estimates from Proposition 2.8, this is less than or equal to 1 if
|u| ≤ 1 and less than or equal to e−ct|u|

α
if |u| > 1, where c does not depend

on z. So the Fourier transform of pzt is in L2, hence pzt is in L2 by Plancherel’s
theorem, with a bound not depending on z.

Now

|r̂zλ(u)| =
∣∣∣ 1

λ− M̂z(u)

∣∣∣ ≤ 1

Re (λ− M̂z(u))
.

This is less than or equal to c/λ if |u| ≤ 1 and less than 1/(λ + c|u|α) if
|u| > 1. Since λ ≥ 1, this proves the corollary.

Recall that Rz
λ is the resolvent operator.
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Proposition 2.10 If f ∈ L2, ‖Rz
λf‖2 ≤ 1

λ
‖f‖2.

Proof. By Jensen’s inequality, ‖P z
t f‖2 ≤ ‖f‖2. We now apply Minkowski’s

inequality for integrals.

Proposition 2.11 Let λ ≥ 1, Rz
λ be as above, h ∈ Rd, and f ∈ L2 ∩ C2

K.
Set

g(x) = Rz
λf(x+ h)−Rz

λf(x)

and
G(x) = Rz

λf(x+ h)−Rz
λf(x)−∇Rz

λf(x) · h.

(a) If α < 1, then
‖g‖2 ≤ c|h|α‖f‖2.

(b) If α ∈ (0, 2), then

‖g‖2 ≤
c

λ
‖f‖2.

(c) If α ∈ [1, 2), then
‖G‖2 ≤ c|h|α‖f‖2.

(d) If α ∈ [1, 2), then

‖G‖2 ≤ c
(1

λ
+ |h|

)
‖f‖2.

Proof. First of all, if f ∈ L2 ∩ C2
K , then Rz

λf ∈ L2 ∩ C2
b by Proposition

2.10 and translation invariance. So ∇Rz
λf is well defined. By translation

invariance,
∂Rzλf

∂xi
= Rz

λ(
∂f
∂xi

), and ∂f
∂xi
∈ C1

K ⊂ L2, so Rz
λ(

∂f
∂xi

) ∈ C1
b , and

is in L2. Therefore to prove the proposition it suffices to look at Fourier
transforms and to use Plancherel’s theorem.

(a) We have

ĝ(u) = f̂(u)r̂zλ(u)[eiu·h − 1],

so using Corollary 2.9

|ĝ(u)| ≤ c|f̂(u)|
λ+ |u|α

|h|α|u|α ≤ c|f̂(u)| |h|α.
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Therefore
‖ĝ‖2 ≤ c|h|α‖f̂‖2,

and the result follows by Plancherel’s theorem.

(b) As in (a), but using |eiu·h − 1| ≤ 2, we have

|ĝ(u)| ≤ 2c|f̂(u)|
λ

,

and we use Plancherel’s theorem as in (a).

(c)

Ĝ(u) = f̂(u)r̂zλ(u)[eiu·h − 1− iu · h].

Now

|eiu·h − 1− iu · h| =
∣∣∣ ∫ u·h

0

[ieis − i] ds
∣∣∣

≤ c

∫ |u·h|
0

|s|α−1 ds

≤ c|u · h|α.
Hence

|Ĝ(u)| ≤ c
|f̂(u)|
λ+ |u|α

|u|α|h|α ≤ c|h|α|f̂(u)|.

(d) Similarly to the proofs of (b) and (c),

|Ĝ(u)| ≤ c
|f̂(u)|
λ+ |u|α

(2 + |u · h|).

If |u| ≤ 1, then

|Ĝ(u)| ≤ c

λ
|f̂(u)|(2 + |h|).

On the other hand, if |u| > 1, then since α ≥ 1 and

|u · h|
λ+ |u|α

≤ |u| |h|
|u|α

≤ |h|,

we have
|Ĝ(u)| ≤ c|h| |f̂(u)|.

Using this proposition we can extend the definition of the functions g,G
and extend the above estimates to every f ∈ L2.
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3 Approximation

A key step in the uniqueness proof is to get a bound on the resolvent for
an arbitrary solution to the martingale problem for L. We do that by an
approximation procedure.

We begin with

Definition 3.1 Let (S,S, λ) be a measure space, where λ is a σ-finite mea-
sure. A random measure µ([0, t] × A)(ω) is a Poisson point process with
intensity measure λ if

(a) whenever A ∈ S and λ(A) < ∞, Nt(A) = µ([0, t] × A) is a Poisson
process with intensity λ(A) and

(b) If n ≥ 1 and A1, . . . , An ∈ S are disjoint with λ(A1), . . . , λ(An) <∞,
then the processes Nt(Ai), i = 1, . . . , n, are independent.

Proposition 3.2 Suppose the following hold.

(1) If A ∈ S and λ(A) < ∞, then Nt(A) is a process starting at 0 with
paths that are constant except for jumps that are of size one.

(2) If A ∈ S and λ(A) <∞, then Nt(A) has paths that are right continuous
with left limits.

(3) If A ∈ S and λ(A) <∞, then Nt(A)− λ(A)t is a martingale.

(4) If A,B ∈ S, λ(A), λ(B) < ∞ and A and B are disjoint, then Nt(A)
and Nt(B) have no jumps in common.

Then µ([0, t]× A) = Nt(A) is a Poisson point process.

Proof. Property (a) of the definition of Poisson point process follows from
a very slight modification of [14, III.T12]. In addition, that theorem shows
that if t > s, then σ(Nt(A)−Ns(A) : A ∈ S}) is independent of Fs.

We next prove that if Ai, i = 1, . . . , n, are disjoint sets of finite λ-measure
and t0 > 0, then

Nt0(A1), . . . , Nt0(An) are independent random variables. (3.1)
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To prove (3.1), we do the case when n = 2, the general case being very
similar. Let u1, u2 be two reals and define

M j
t = exp

(
iujNt∧t0(Aj)− λ(Aj)(t ∧ t0)(eiuj − 1)

)
, j = 1, 2.

Because Nt(Aj) is a Poisson process with intensity λ(Aj), each M j
t is a mar-

tingale with M j
0 = 1.

Since Nt(A1) and Nt(A2) have no jumps in common and are non-decrea-
sing, the quadratic variation process [N.(A1), N.(A2)]t is zero. So by Ito’s
product formula,

M1
∞M

2
∞ = M1

0M
2
0 +

∫ ∞
0

M1
s− dM

2
s +

∫ ∞
0

M2
s− dM

1
s ,

or E [M1
∞M

2
∞] = 1. It follows that

E
[
eiu1Nt0 (A1)eiu2Nt0 (A2)

]
= eλ(A1)t0(eiu1−1)eλ(A2)t0(eiu2−1)

= E
[
eiu1Nt0 (A1)

]
E
[
eiu2Nt0 (A2)

]
.

This holds for every u1, u2, so Nt0(A1) and Nt0(A2) are independent.

A very similar argument shows that if 0 < s0 < t0, then Nt0(A1) −
Ns0(A1), . . . , Nt0(An)−Ns0(An) are independent random variables. This and
the independence of σ(Nt(A)−Ns(A) : A ∈ S) from Fs when t > s implies
part (b) of Definition 3.1.

We next construct a function F : Rd×Rd → Rd such that for every Borel
set B and every x ∈ Rd∫

1B(F (x, u))
du

|u|d+α
=

∫
B

A(x, h)

|h|d+α
dh. (3.2)

Such constructions are known (see [13]), but we want our F to be continuous
in x as well, and the existing constructions do not necessarily possess this
property. (When d > 1, F satisfying (3.2) are by no means unique.) We
will do the case d = 2 for simplicity of notation, but the idea for higher
dimensions is essentially the same.
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Fix x. We define F for u in the first quadrant, and the other quadrants
are done similarly. Set r0 =∞ and choose r1 > r2 > · · · > 0 such that∫

[ri+1,ri)×[0,∞)

A(x, h)

|h|2+α
dh = 2−1, i = 0, 1, . . .

For each strip [ri+1, ri)× [0,∞), let s0 =∞, s2 = 0, and choose s1 > 0 such
that ∫

[ri+1,ri)×[sj+1,sj)

A(x, h)

|h|2+α
dh = 2−2, j = 0, 1.

Let R1 = R1(x) be the collection of such rectangles. (Some of our rectangles
will be semi-infinite.) Note that each rectangle in R1 has the same mass
with respect to the measure A(x, h)/|h|2+α dh, but the rectangles are not
congruent in shape.

Set v0 =∞ and choose v1 > v2 > · · · > 0 such that∫
[vi+1,vi)×[0,∞)

du

|u|2+α
= 2−1, i = 0, 1, . . .

For each strip [vi+1, vi) × [0,∞), let w0 = ∞, w2 = 0, and choose w1 > 0
such that ∫

[vi+1,vi)×[wj+1,wj)

du

|u|2+α
= 2−2, j = 0, 1.

Let V1 be the collection of such rectangles. Note V1 does not depend on x.

Let Γ1 be the map from V1 to R1 taking the element [vi+1, vi)× [wj+1, wj)
of V1 to the element [ri+1, ri)× [sj+1, sj) of R1.

If [r, r′)× [s, s′) is an element of R1, choose r′′ such that∫
[r,r′′)×[s,s′)

A(x, h)

|h|2+α
dh = 2−3,

and then s′′, s′′′ such that the integrals of A(x, h)/|h|2+α over [r, r′′)× [s, s′′)
and over [r′′, r′) × [s, s′′′) are both equal to 2−4. We put the 4 rectangles
[r, r′′) × [s, s′′), [r, r′′) × [s′′, s′), [r′′, r′) × [s, s′′′), and [r′′, r′) × [s′′′, s′) into
R2 = R2(x) and do this for each rectangle in R1. We divide each rectangle
of V1 similarly into 4 rectangles of mass 2−4 with respect to the measure
du/|u|2+α and let V2 be the collection of such subrectangles. We define the
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map Γ2 from V2 into R2 that takes a rectangle of V2 into the corresponding
rectangle of R2.

We define Rm and Vm for all m by induction. For each rectangle in
Rm, we divide it in two by introducing a vertical line segment (or ray) so
that each of the two resulting subrectangles has equal mass with respect to
the measure A(x, h)|h|−2−α dh. Each of these two subrectangles is divided
into two by introducing two horizontal line segments so that all of the four
resulting subrectangles have equal mass with respect to A(x, h)|h|−2−α dh.
We do this for each rectangle in Rm, and let Rm+1 be the collection of all
the subrectangles formed in this way. We construct Vm+1 from Vm in a similar
way, but we use the measure |u|−2−α du instead. Define the maps Γm = Γm,x
that take the rectangles of Vm into the corresponding rectangles of Rm.

By virtue of Assumption 1.1(a), any compact subset of (0,∞)2 will, pro-
vided m is sufficiently large, be covered by finitely many rectangles such that
each of these rectangles belongs to Rm and each rectangle has finite side
lengths. Also, if R is rectangle in Rm which has finite side lengths, then
any rectangle in Rm+1 contained in R will have side lengths at most a fixed
fraction (strictly less than 1) of the corresponding side lengths of R. Similar
comments apply to Vm.

Now define Fm(x, u) : (0,∞)2 → (0,∞)2 by setting Fm(x, u) to be the
lower left hand point of Γm(U) if u ∈ U ∈ Vm. Recall x is fixed. We check that
Fm(x, u) converges uniformly over u in compact subsets of (0,∞)2. Consider
a compact subset of (0,∞)2, and take m large enough so that this subset is
covered by finitely many rectangles {U i

m}, each in Vm and each with finite
side lengths. Let δm be the maximum of the side lengths of the rectangles
{Γm(U i

m)}, and observe that by the paragraph above, δm → 0 as m→∞. If
u ∈ U j

n ⊂ U i
m, where n ≥ m, then both Fm(x, u) and Fn(x, u) lie in Γm(U i

m),
so |Fn(x, u) − Fm(x, u)| ≤

√
2δm. This implies the uniform convergence of

Fm(x, u) on compact subsets of (0,∞)2.

Define F (x, u) to be the limit of Fm(x, u). If u1 and u2 are distinct points of
(0,∞)2, then for some m large enough, u1 and u2 will lie in distinct rectangles
U1 and U2 of Vm. Moreover, if m is large enough, the distance between U1

and U2 will be positive. For all n ≥ m, Fn(x, ui) will lie in Γm(Ui), i = 1, 2.
We conclude that the map u→ F (x, u) is one-to-one.

The construction shows that the equality (3.2) holds if m ≥ 1 and B ∈
Vm. Linearity and a limit argument shows that it holds for every Borel set
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contained in (0,∞)2.

Suppose x0 ∈ R2 is fixed and m ≥ 1. Given a compact subset H of (0,∞)2

and ε > 0, choose m large enough so that H can be covered by finitely many
rectangles {U i

m} with the properties that each U i
m ∈ Vm, each rectangle U i

m

has finite side lengths, and in addition each rectangle of Vm whose closure
intersects the closure of one of the U i

m also has finite side lengths. Taking
m even larger if necessary, we can arrange that the maximum side length of
any Γm,x0(U

i
m) is at most ε. Recall that the construction of the rectangles in

Vm is independent of the point x (this is not the case for Rm). By taking x
sufficiently close to x0 the boundaries of each rectangle in Ri(x), i ≤ m, can
be made as close as we please to the boundaries of the corresponding rectangle
of Ri(x0); we are using the continuity of A(x, h) here. Take x sufficiently
close to x0 so that the lower left hand corner of each Γm,x(U

i
m) is within ε of

the lower left hand corner of Γm,x0(U
i
m) and the side lengths of each Γm,x(U

i
m)

are all less than 2ε. Then for each u ∈ H, |Fm(x, u)− Fm(x0, u)| < ε, and if
n ≥ m, |Fn(x0, u)−Fm(x0, u)| <

√
2ε and |Fn(x, u)−Fm(x, u)| < 2

√
2ε. We

conclude that for n ≥ m,

|Fn(x, u)− Fn(x0, u)| ≤ (3
√

2 + 1)ε < 6ε.

Letting n→∞, we have |F (x, u)−F (x0, u)| ≤ 6ε for u ∈ H, and we deduce
that F (x, u) is continuous in x, uniformly over u ∈ H.

Using Assumption 1.1(a), the construction also tells us that there exists
β such that

β|u| ≤ |F (x, u)| ≤ β−1|u|, x ∈ R2, u 6= 0. (3.3)

From now on, we no longer assume d = 2. For each x, let G(x, ·) be the
inverse of F (x, ·). Define

Nt(C) =
∑
s≤t

1(G(Xs−,∆Xs)∈C)

and

λ(C) =

∫
C

du

|u|d+α
.

Proposition 3.3 Let x0 ∈ Rd and let P be a solution to the martingale
problem for L started at x0. Then with respect to P, Nt(·) is a Poisson point
process with intensity measure λ.
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Proof. Let F (x,C) = {F (x, z) : z ∈ C}. Then

Nt(C) =
∑
s≤t

1(∆Xs∈F (Xs−,C)).

By Proposition 2.6 and a limit argument, the right hand side is equal to a
martingale plus ∫ t

0

∫
F (Xs−,C)

A(Xs, h)

|h|d+α
dh ds.

By (3.2) and the fact that X has only countably many jumps, this in turn is
equal to ∫ t

0

∫
1(F (Xs−,u)∈F (Xs−,C))

du

|u|d+α
ds =

∫ t

0

∫
C

du

|u|d+α
ds

= λ(C)t.

Therefore by Proposition 3.2 we see that Nt(·) is a Poisson point process.

Set µ([0, t]×C) = Nt(C). Note the definition of µ does not depend on P.

Proposition 3.4 Xt solves the stochastic differential equation

Xt = X0 +

∫ t

0

∫
|F (Xs−,z)|≤1

F (Xs−, z) (µ(dz ds)− λ(dz) ds)

+

∫ t

0

∫
|F (Xs−,z)|>1

F (Xs−, z)µ(dz ds). (3.4)

Proof. Let δ > 0. Set G(x,D) = {G(x,w) : w ∈ D}, Dδ = {y : |y| > δ},

Hδ
t =

∑
s≤t

∆Xs1(1≥|∆Xs|>δ),

H̃δ
t =

∫ t

0

∫
G(Xs−,Dδ\D1)

F (Xs−, z)λ(dz) ds,

Kt =
∑
s≤t

∆Xs1(|∆Xs|>1).
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If ∆Xs 6= 0, the definition of µ via Nt shows that µ assigns unit mass to some
point (z, s) satisfying z = G(Xs−,∆Xs), or with ∆Xs = F (Xs−, z). Hence

Hδ
t =

∫ t

0

∫
G(Xs−,Dδ\D1)

F (Xs−, z)µ(dz ds) (3.5)

and

Kt =

∫ t

0

∫
G(Xs−,D1)

F (Xs−, z)µ(dz ds). (3.6)

By [13, Theorem II.10], there exists a function F (x, z) satisfying∫
1B(F (x, u))

du

|u|d+α
=

∫
B

A(x, h)

|h|d+α
dh, (3.7)

for B Borel and and a Poisson point process µ such that Xt solves

Xt = X0 +

∫ t

0

∫
|F (Xs−,z)|≤1

F (Xs−, z) (µ(dz ds)− λ(dz) ds)

+

∫ t

0

∫
|F (Xs−,z)|>1

F (Xs−, z)µ(dz ds).

From this equation we see that µ gives unit mass to a point (z, s) if and only
if ∆Xs = F (Xs−, z). Set

V δ
t = Xt −X0 −Kt − (Hδ

t − H̃δ
t).

We then have

V δ
t =

∫ t

0

∫
|F (Xs−,z)|≤δ

F (Xs−, z) (µ(dz ds)− λ(dz) ds).

A limit argument and (3.7) show that∫
|F (x, u)|2 du

|u|d+α
=

∫
|h|2A(x, h)

|h|d+α
dh,

which is bounded uniformly in x. Consequently each component of V δ is a
pure jump martingale and E sups≤t |V δ

t |2 → 0 as δ → 0.

On the other hand, using (3.5) and (3.6),
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V δ
t = Xt −

(
X0 +

∫ t

0

∫
δ<|F (Xs−,z)|≤1

F (Xs−, z) (µ(dz ds)− λ(dz) ds)

+

∫ t

0

∫
|F (Xs−,z)|>1

F (Xs−, z)µ(dz ds)
)
.

Our conclusion follows.

Fix x0 ∈ Rd and define Y n
s to be equal to x0 if s < 1/n and equal to

X(k−1)/n if k/n ≤ s < (k+ 1)/n. The reason for the 1/n delay will appear in
(4.12). Let

Xn
t = X0 +

∫ t

0

∫
|F (Y ns ,z)|≤1

F (Y n
s , z)(µ(dz ds)− λ(dz) ds)

+

∫ t

0

∫
|F (Y ns ,z)|>1

F (Y n
s , z)µ(dz ds). (3.8)

Proposition 3.5 Let x ∈ Rd and let P be a solution to the martingale prob-
lem for L started at x. For each t0

sup
t≤t0
|Xt −Xn

t | → 0

in probability as n→∞.

Proof. Except for s = 0, notice Y n
s → Xs− a.s. under P, using the fact that

the paths of Xt have left limits. Except for z in the boundary of any of the
2d orthants, F (Y n

s , z)→ F (Xs−, z) a.s. if s > 0.

Let XI
t be the first double integral on the right in (3.4) and XII

t the second.
Let

Zn
t = X0 +

∫ t

0

∫
|F (Xs−,z)|≤1

F (Y n
s , z)(µ(dz ds)− λ(dz) ds)

+

∫ t

0

∫
|F (Xs−,z)|>1

F (Y n
s , z)µ(dz ds)

= X0 + Zn,I
t + Zn,II

t .
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Using Doob’s inequality on each component and basic properties of stoch-
astic integrals with respect to Poisson point processes (see, e.g., [11]),

E sup
t≤t0
|XI

t − Z
n,I
t |2 ≤ cE |XI

t0
− Zn,I

t0 |
2

= cE
∫ t0

0

∫
|F (Xs−,z)|≤1

|F (Xs−, z)− F (Y n
s , z)|2 λ(dz) ds.

Using (3.3), the integrand is bounded by

c|z|21(|z|≤β−1),

which is integrable with respect to λ(dz) ds. For s > 0 and all z not on the
boundary of any of the orthants, and hence for almost every z with respect
to λ, the integrand tends to 0, a.s. Therefore by dominated convergence

E sup
t≤t0
|XI

t − Z
n,I
t |2 → 0.

Since |F (Xs−, z)| > 1 implies |z| ≥ β by (3.3), with probability one, there
are only finitely many points (z, s) with |z| ≥ β charged by µ before time t0.
Also with probability one, none of the z values will lie on the boundary of
any of the orthants. It follows then that supt≤t0 |X

II
t −Z

n,II
t | → 0 as n→∞.

Notice

Xn
t − Zn

t =

∫ t

0

∫
C(n,s)

F (Y n
s , z)λ(dz) ds,

where

C(n, s) = {|F (Y n
s , z)| ≤ 1, |F (Xs−, z)| > 1}

∪ {|F (Xs−, z)| ≤ 1, |F (Y n
s , z)| > 1}.

Therefore

E sup
t≤t0
|Xn

t − Zn
t | ≤

5∑
i=1

E
∫ t0

0

∫
Di(n,s)

|F (Y n
s , z)|λ(dz) ds,

where

D1(n, s) = {|F (Y n
s , z)| ≤ 1− γ, |F (Xs−, z)| > 1},

D2(n, s) = {|F (Y n
s , z)| ≤ 1, |F (Xs−, z)| ≥ 1 + γ},

D3(n, s) = {|F (Y n
s , z)| ≥ 1 + γ, |F (Xs−, z)| ≤ 1},

D4(n, s) = {|F (Y n
s , z)| > 1, |F (Xs−, z)| ≤ 1− γ},

D5(n, s) = {1− γ ≤ |F (Y n
s , z)|, |F (Xs−, z)| < 1 + γ},
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and γ > 0 will be chosen in a moment. By (3.3), if |F (Xs−, z)| ≥ 1− γ, then
|z| ≥ c. So using (3.2) and Assumption 1.1

E
∫ t0

0

∫
D5(n,s)

|F (Y n
s , z)|λ(dz) ds

≤ (1 + γ)E
∫ t0

0

∫
1B(0,1+γ)\B(0,1−γ)(F (Xs−, z))λ(dz) ds

= (1 + γ)E
∫ t0

0

∫
B(0,1+γ)\B(0,1−γ)

A(Xs−, h)

|h|d+α
dh ds

≤ cγt0.

So the integral over D5(n, s) can be made as small as we like by taking γ
sufficiently small. Once γ is chosen, observe that 1D1(n,s) → 0 a.s. for every
s > 0 because Y n

s → Xs−. Also, on D1(n, s), we have |F (Xs−, z)| > 1, and
as above |z| > c, so |F (Y n

s , z)|1D1(n,s) is dominated by (1 + γ)1(|z|≥c), which
is integrable with respect to λ(dz) ds. So by dominated convergence,

E
∫ t0

0

∫
D1(n,s)

|F (Y n
s , z)|λ(dz) ds→ 0.

The argument for D2(n, s), D3(n, s), and D4(n, s) is the same. Hence

E sup
t≤t0
|Xn

t − Zn
t | → 0

.

Proposition 3.6 Let x0 ∈ Rd and let P be a solution to the martingale
problem for L started at x0. If f ∈ C2

b , then

f(Xn
t )− f(Xn

0 )−
∫ t

0

MY ns f(Xn
s ) ds

is a martingale under P, where My is defined in (2.2).

Proof. If µ assigns unit mass to (z, s), then ∆Xn
s = F (Y n

s , z). By Ito’s
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formula

f(Xn
t )− f(Xn

0 )

= martingale +

∫ t

0

∫
|F (Xs−,z)|>1

∇f(Xn
s−) · F (Y n

s , z)µ(dz ds)

+
∑
s≤t

[f(Xn
s )− f(Xn

s−)−∇f(Xn
s−) ·∆Xn

s ]

= martingale +

∫ t

0

∫
[f(Xn

s− + F (Y n
s , z))− f(Xn

s−)

−∇f(Xn
s−) · F (Y n

s , z)1(|F (Y ns ,z)|≤1)]µ(dz ds)

= martingale +

∫ t

0

∫
[f(Xn

s− + F (Y n
s , z))− f(Xn

s−)

−∇f(Xn
s−) · F (Y n

s , z)1(|F (Y ns ,z)|≤1)] |z|−(d+α) dz ds.

Fix y and if α ≥ 1, let

g(v) = f(y + v)− f(y)−∇f(y) · v1(|v|≤1).

A limit argument using (3.2) shows∫
g(F (x, z))

1

|z|d+α
dz =

∫
g(h)

A(x, h)

|h|d+α
dh.

Now taking y = Xn
s− and x = Y n

s shows that f(Xn
t ) − f(Xn

0 ) is equal to a
martingale plus∫ t

0

∫
[f(Xn

s− + h)− f(Xn
s−)−∇f(Xn

s−) · h1(|h|≤1)]
A(Y n

s , h)

|h|d+α
dh ds,

which proves the proposition when α ≥ 1. The case α < 1 is similar.

4 Existence and uniqueness

Theorem 4.1 Suppose Assumption 1.1 holds. Then for each x there exists
a solution to the martingale problem for L started at x.
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Proof. In view of Propositions 2.3 and 2.4, existence of a solution follows
by the proof in [4, Section 3], with minor modifications to handle the case of
d dimensions.

Remark 4.2 It is easy to see by the same arguments that existence holds
if A(x, h) is bounded above and below by positive constants and for each h,
A(x, h) is continuous in x.

We now turn to the proof of uniqueness. Fix x0 ∈ Rd. If G is the set of
solutions to the martingale problem for L started at x0, then G is a tight
family by the proof in [4, Section 3]. Any subsequential limit point of G is in
G by the arguments in that same section, and therefore G is compact. Hence
by the proofs in [17, Chapter 12], it suffices to consider uniqueness of strong
Markov families of solutions {Px} to the martingale problem for L.

Let η > 0 and let ψη be as in (1.3). We will sometimes make the following
temporary assumption, where we will choose ζ later:

Assumption 4.3 There exists ζ such that

|A(x, h)− A(x0, h)| ≤ ζ

ψη(|h|)
, x ∈ Rd, |h| ≤ 1.

For the rest of this section we take α ≥ 1, the case α < 1 being similar.

Let Mzf be defined by (2.2) and let Rz
λ be the corresponding resolvent.

Define an operator H by

Hf(x) =

∫
|h|≤1

|f(x+ h)− f(x)−∇f(x) · h| ζ

ψη(|h|)|h|d+α
dh

+

∫
|h|>1

|f(x+ h)− f(x)| dh

|h|d+α
, f ∈ C2

b .

Proposition 4.4 There exists a constant c1 not depending on x0 such that
if λ ≥ 1, then

‖HRx0
λ f‖2 ≤ c1(ζ + λ−1)‖f‖2, f ∈ L2 ∩ C2

b . (4.1)
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Proof. By Minkowski’s inequality for integrals,

‖HRx0
λ f‖2 ≤

∫
|h|≤1

‖Rx0
λ f(x+ h)−Rx0

λ f(x)

−∇Rx0
λ f(x) · h‖2

ζ

ψη(h)|h|d+α
dh

+

∫
|h|>1

‖Rx0
λ f(x+ h)−Rx0

λ f(x)‖2
c

|h|d+α
dh. (4.2)

By Proposition 2.11(c) and the definition of ψη given in (1.3), the first term
on the right of (4.2) is bounded by

c

∫
|h|≤1

|h|α ζ

ψη(h)|h|d+α
dh‖f‖2 ≤ cζ‖f‖2. (4.3)

By Proposition 2.11(b) the second term on the right of (4.2) is bounded by

c

λ

∫
|h|>1

dh

|h|d+α
‖f‖2. (4.4)

Corollary 4.5 Suppose Assumption 4.3 holds and λ ≥ 1. There exists κ
such that

‖(L −Mx0)Rx0
λ f‖2 ≤ κ(ζ + λ−1)‖f‖2, f ∈ L2 ∩ C2

b , (4.5)

and

‖ sup
w∈Rd

|MwRx0
λ f(·)−Mx0Rx0

λ f(·)| ‖2 ≤ κ(ζ + λ−1)‖f‖2, f ∈ L2 ∩ C2
b .

(4.6)

Proof. If Assumption 4.3 holds, then

|(L −Mx0)Rx0
λ f(x)|

=
∣∣∣ ∫ [Rx0

λ f(x+ h)−Rx0
λ f(x) (4.7)

−∇Rx0
λ f(x) · h1|h|≤1)]

A(x, h)− A(x0, h)

|h|d+α
dh
∣∣∣

≤ cHRx0
λ f(x)
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and for each w

|(MwRx0
λ f(x, y)−Mx0Rx0

λ f(x)|

≤
∣∣∣ ∫
|h|≤1

[Rx0
λ f(x+ h)−Rx0

λ f(x) (4.8)

−∇Rx0
λ f(x) · h1|h|≤1)]

A(w, h)− A(x0, h)

|h|d+α
dh
∣∣∣

+
∣∣∣ ∫
|h|≥1

[Rx0
λ f(x+ h)−Rx0

λ f(x)]
A(w, h) + A(x0, h)

|h|d+α
dh
∣∣∣

≤ cHRx0
λ f(x).

Now combine Proposition 4.4, (4.7), and (4.8).

Proposition 4.6 Let {Px} be a strong Markov family of solutions to the
martingale problem for L. For f bounded and measurable set

Sλf(x) = E x

∫ ∞
0

e−λtf(Xt) dt.

Suppose Assumption 4.3 holds with ζ and λ chosen so that λ ≥ 1 and κ(ζ +
λ−1) ≤ 1/2, where κ is as in Corollary 4.5. Let ρ ∈ L2 be non-negative with
compact support. Then

sup
‖g‖2≤1

∣∣∣ ∫ Sλg(x)ρ(x) dx
∣∣∣ <∞.

Proof. Fix x0 ∈ Rd, define Xn
t as in Section 3, and define

Snλg(x) = E x

∫ ∞
0

e−λtg(Xn
t ) dt, g ∈ C2

b .

Step 1: Our first goal is to show that if

Λn = sup
‖g‖2≤1

∣∣∣ ∫ Snλg(x)ρ(x) dx
∣∣∣, (4.9)

then Λn <∞. The value of Λn will depend on ρ.
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To prove (4.9) it suffices to suppose g ≥ 0 since we can write an arbitrary
g as the difference of its positive and negative parts. Suppose g ∈ C2

K and
write

Snλg(x) = E x

∫ 1/n

0

e−λtg(Xn
t ) dt+

∞∑
k=1

E x

∫ (k+1)/n

k/n

e−λtg(Xn
t ) dt. (4.10)

Over the time interval [0, 1/n), the process Xn
t behaves like the Lévy process

corresponding to Mx0 started at x. So the first term on the right hand side
of (4.10) is bounded by Rx0

λ g(x). By the Cauchy-Schwarz inequality and
Proposition 2.10,∣∣∣ ∫ Rx0

λ g(x)ρ(x) dx
∣∣∣ ≤ ‖Rx0

λ g‖2‖ρ‖2 ≤
c

λ
‖g‖2. (4.11)

The kth term on the right hand side of (4.10) is

e−λ(k−1)/nE x

∫ (k+1)/n

k/n

e−λ(t−(k−1)/n)g(Xn
t ) dt

≤ ce−λk/nE x
[
E x
[ ∫ 2/n

1/n

g(Xn
t+ k−1

n

) dt | F(k−1)/n

] ]
.

Let us temporarily write Y for Y n
(k−1)/n. Conditional on F(k−1)/n, the process

Xn
t over the time interval [k/n, (k + 1)/n) behaves like the Lévy process

corresponding to MY started at Xn
(k−1)/n and run over the time interval

[1/n, 2/n]. Therefore

E x
[ ∫ 2/n

1/n

g(Xn
t+ k−1

n

) dt | F(k−1)/n

]
(4.12)

≤
∫ 2/n

1/n

P Y
t g(Xn

(k−1)/n) dt

≤ eλ/nP Y
1/nR

Y
λ g(Xn

(k−1)/n).

Using Corollary 2.9 and Proposition 2.10 we have for w ∈ Rd

Pw
1/nR

w
λ g(v) =

∫
pw(1/n, v − z)Rw

λ g(z) dz

≤ ‖pw(1/n, ·)‖2‖Rw
λ g‖2

≤ cn
1

λ
‖g‖2,
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where cn depends on n. Hence the kth term on the right hand side of (4.10)
is bounded by ce−λk/n‖g‖2. Because ρ is in L2 with compact support,∫

E x

∫ (k+1)/n

k/n

g(Xn
t ) dt ρ(x) dx ≤ c‖g‖2

∫
ρ(x) dx ≤ c‖g‖2.

Combining this with (4.11) and taking the supremum over g ∈ C2
K with

‖g‖2 ≤ 1 proves (4.9).

Step 2: Next we show

Λn ≤
2‖ρ‖2

λ
, n ≥ 1. (4.13)

Let f ∈ C2
b . By Proposition 3.6

E xf(Xn
t )− f(x) = E x

∫ t

0

MY ns f(Xn
s ) ds.

Multiplying by e−λt and integrating over t from 0 to ∞

Snλf(x)− 1

λ
f(x) = E x

∫ ∞
0

e−λt
∫ t

0

MY ns f(Xn
s ) ds dt (4.14)

= E x

∫ ∞
0

MY ns f(Xn
s )

∫ ∞
s

e−λt dt ds

=
1

λ
E x

∫ ∞
0

e−λsMY ns f(Xn
s ) ds

=
1

λ
SnλMx0f(x) +

1

λ
E x

∫ ∞
0

e−λs(MY ns −Mx0)f(Xn
s ) ds.

If g ∈ C2
K , set f = Rx0

λ g. By translation invariance, f ∈ C2
b . Standard

semigroup manipulations show

Mx0f =Mx0Rx0
λ g = λRx0

λ g − g.

Therefore

SnλR
x0
λ g(x)− 1

λ
Rx0
λ g(x) ≤ SnλR

x0
λ g(x)− 1

λ
Snλg(x) +

1

λ
SnλH(x),

where
H(y) = sup

w∈Rd
|MwRx0

λ g(y)−Mx0Rx0
λ g(y)|.
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We thus have
Snλg(x) ≤ Rx0

λ g(x) + SnλH(x). (4.15)

By Corollary 4.5 and our choice of ζ and λ,

‖H‖2 ≤ κ(ζ + λ−1)‖g‖2 ≤
1

2
‖g‖2.

Multiplying (4.15) by ρ(x) and integrating,∣∣∣ ∫ Snλg(x)ρ(x) dx
∣∣∣ ≤ ∣∣∣ ∫ Rx0

λ g(x)ρ(x) dx
∣∣∣+
∣∣∣ ∫ SnλH(x)ρ(x) dx

∣∣∣
≤ ‖Rx0

λ g‖2‖ρ‖2 + Λn‖H‖2

≤ 1

λ
‖ρ‖2‖g‖2 +

1

2
Λn‖g‖2,

where Λn is defined in Step 1. Taking the supremum over g ∈ C2
K with

‖g‖2 ≤ 1, we thus have

Λn ≤
‖ρ‖2

λ
+

1

2
Λn.

In Step 1 we proved Λn <∞, and we conclude

Λn ≤
2

λ
‖ρ‖2.

Step 3: We now pass to the limit in n. By Step 1 and Step 2, if g ∈ C2
K with

‖g‖2 ≤ 1, then ∣∣∣ ∫ Snλg(x)ρ(x) dx
∣∣∣ ≤ 2‖ρ‖2

λ
.

On the other hand,

Snλg(x) = E x

∫ ∞
0

e−λtg(Xn
t ) dt→ E x

∫ ∞
0

e−λtg(Xt) dt = Sλg(x)

by dominated convergence. We thus see that∣∣∣ ∫ Sλg(x)ρ(x) dx
∣∣∣ ≤ 2‖ρ‖2

λ
.

Our result follows by taking the supremum over g ∈ C2
K with ‖g‖2 ≤ 1.
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Proof of Theorem 1.2: Let x0 ∈ Rd. Let ρ ∈ L2 with compact support.
We have seen that it suffices to prove uniqueness when we have a strong
Markov family of solutions to the martingale problem for L, so suppose we
have two such families {Pxi }, i = 1, 2. Define

Siλf(x) = E x
i

∫ ∞
0

e−λtf(Xt) dt, i = 1, 2,

and let
S∆
λ = S1

λ − S2
λ.

Suppose λ0 ≥ 1 and ζ are chosen so that κ(ζ + λ−1
0 ) ≤ 1

2
and λ > λ0, and

suppose Assumption 4.3 holds with this choice of ζ.

Since Pxi is a solution to the martingale problem for L started at x, for
f ∈ C2

b

E x
i f(Xt)− f(x) = E x

i

∫ t

0

Lf(Xs) ds.

Multiplying by e−λt and integrating over t from 0 to ∞,

Siλf(x)− 1

λ
f(x) = E x

i

∫ ∞
0

e−λt
∫ t

0

Lf(Xs) ds dt

= E x
i

∫ ∞
0

Lf(Xs)

∫ ∞
s

e−λt dt ds

=
1

λ
SiλLf(x)

=
1

λ
SiλMx0f(x) +

1

λ
Siλ(L −Mx0)f(x).

Now take g ∈ C2
K and set f = Rx0

λ g. Then f ∈ C2
b and Mx0f = λRx0

λ g − g.
Hence

SiλR
x0
λ g(x)− 1

λ
Rx0
λ g(x) = SiλR

x0
λ g(x)− 1

λ
Sgλ(x) +

1

λ
Siλ(L −Mx0)Rx0

λ g(x),

or
Siλg(x) = Rx0

λ g(x) + Siλ(L −Mx0)Rx0
λ g(x). (4.16)

Let

Θ = sup
‖g‖2≤1

∣∣∣ ∫ S∆
λ g(x)ρ(x) dx

∣∣∣.
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By Proposition 4.6, we know that Θ <∞. From (4.16)

S∆
λ g(x) = S∆

λ (L −Mx0)Rx0
λ g(x).

Multiplying by ρ(x) and integrating,∣∣∣ ∫ S∆
λ g(x)ρ(x) dx

∣∣∣ =
∣∣∣ ∫ S∆

λ (L −Mx0)Rx0
λ g(x)ρ(x) dx

∣∣∣
≤ Θ‖(L −Mx0)Rx0

λ g‖2.

By Corollary 4.5 this is bounded by 1
2
‖g‖2. Taking the supremum over g ∈

C2
K with ‖g‖2 ≤ 1, we then obtain Θ ≤ 1

2
Θ. Since Θ < ∞, this implies

Θ = 0. This can be rewritten as∫
S1
λg(x)ρ(x) dx =

∫
S2
λg(x)ρ(x) dx.

This is true for each ρ ∈ L2 with compact support, and we conclude that if
λ ≥ 1, then S1

λg(x) = S2
λg(x) for almost every x. By Proposition 2.7, Siλg(x)

is continuous in x, so we have equality for all x. By the uniqueness of the
Laplace transform and the right continuity of Xt, we conclude

E x
1g(Xt) = E x

2g(Xt)

for all x and all t whenever g is continuous and bounded. By a limit argument
this equality holds for all bounded g. Finally, by using the Markov property,
the finite dimensional distributions under Px1 and Px2 are the same for each x.

The last step is to remove the use of Assumption 4.3. This is a standard
localization argument. Because of Assumption 1.1, there exists Ã(x, h) such

that Ã agrees with A in a neighborhood of x0 and such that Assumption 1.1
holds for Ã. If L̃ is the operator defined in terms of Ã in the same way as L is
defined in terms of A, the above shows we have uniqueness for the martingale
problem for L̃ started at x0. From this point on, we proceed exactly as in
the diffusion case – see [5, Chapter VI]; see also [4, Section 6] for a similar
argument. This completes the proof of Theorem 1.2.

Remark 4.7 It is clear that ψη defined by (1.3) can be replaced by any
decreasing function ψ such that∫

|h|≤1

1

ψ(|h|)|h|d
dh <∞,
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or equivalently, ∫ 1

0

1

ψ(r)r
dr <∞.

Remark 4.8 Just as in the case of diffusions, we do not really need conti-
nuity of A(x, h) in x, just that each point x0 has a neighborhood in which
A(x, ·) is sufficiently close to A(x0, ·).

Remark 4.9 In [12] Komatsu considers uniqueness for operators of the form
L1 + L2, where L1 is a stable process of index α (not necessarily symmet-
ric, but he requires that the jump kernel for L1 be d times continuously
differentiable in h away from the origin) and

L2f(x) =

∫
[f(x+ h)− f(x)]n(x, dh)

(with the appropriate modification when α ≥ 1) where there exists a measure
n∗ such that |n(x, dh)| ≤ n∗(dh) and

∫
(1∧ |h|α)n∗(dh) <∞. If we write the

kernel for L1 as A0(h)/|h|d+α and if in addition we assume n∗ has a density
with respect to Lebesgue measure, we can fit his framework into ours by
setting

A(x, h) = A0(h) +
n(x, dh)

dh
|h|d+α.

Remark 4.10 We have not tried to find the weakest possible conditions pos-
sible, particularly with regard to “large jumps.” One will still have unique-
ness with minimal assumptions on the intensity of the jumps above some size
δ. This is apparent from the stochastic differential equations representation
of X: there are only finitely many jumps of size larger than δ in any finite
time interval, and so one can consider them sequentially. Our results will
imply uniqueness up to the time of the first jump of size larger than δ, the
law of that jump is uniquely determined by the location the process jumps
from, and one then has uniqueness up to the time of the second large jump,
and so on.
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Probabilités X, 245–400, Springer, Berlin, 1976.

[15] N. Nadirashvili, Nonuniqueness in the martingale problem and the
Dirichlet problem for uniformly elliptic operators. Ann. Scuola Norm.
Sup. Pisa 24 (1997), no. 3, 537–549.
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