
Correction to “Stability of parabolic Harnack
inequalities on metric measure spaces”

Martin T. Barlow, Richard F. Bass and Takashi Kumagai

Dr. N. Kajino pointed us out that the proof of Lemma 3.3 in the paper [BBK] is
inadequate, since there is no easy way to control the Green function gλ(x, y) near the boundary
of D. Since there are also some other minor errors in Section 3, we have made a revision from

page 499, line 6 to the end of Section 3. We thank Dr. Kajino for pointing out the error and
for his comments on the revision.
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Let Y be the process associated with the Dirichlet form (E ,F). Let Gλ be the λ-resolvent
associated with the process Y ; that is,

Gλf(x) = Ex
∫ ∞
0

e−λtf(Yt)dt,

for bounded measurable f . Let pt(·, ·) be the heat kernel of Y . Then the Green kernel of Gλ
is given by

gλ(x, y) =

∫ ∞
0

e−λtpt(x, y)dt.

We will use the Green kernel to build a cut-off function ϕ.

Lemma 3.2. Let x0 ∈ X. Then there exist δ ∈ (0, 1) and C1 = C1(δ) > 0 such that if

λ = c0Ψ(δR)−1, then

gλ(x, y) ≤ C1
Ψ(R)

V (x0, R)
, x ∈ B(x0, R)c, y ∈ B(x0, δR), (3.1)

gλ(x, y) ≥ 2C1
Ψ(R)

V (x0, R)
, x, y ∈ B(x0, δR). (3.2)

Proof. This follows easily from HK(Ψ) by integration. �

Lemma 3.3. There exists θ > 0 such that the following holds. Let x0 ∈ X, R > 0,
x1 ∈ B(x0, R), and λ ≥ cΨ(R)−1. Then

|gλ(x1, y)− gλ(x1, y
′)| ≤ c1

(d(y, y′)

R

)θ Ψ(R)

V (x0, R)
for y, y′ ∈ B(x0, 2R)c. (3.3)
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(ii) If d(y, y′) ≥ R/4 then (3.3) follows immediately from (3.1). Otherwise we use the Hölder
continuity of pt(x1, ·), which follows from PHI(Ψ) by a standard argument; see [BGK], Corol-
lary 4.2. (Note that to handle small values of t we need to extend the function p·(x1, ·) from

(0,∞) × B(x0, R)c to R × B(x0, R)c, by setting ps(x1, y) = 0 for s < 0.) Once we have the
Hölder continuity of pt(x1, ·), integrating gives (3.3). �

The following lemma is given in [BH] Chapter I, Proposition I.4.1.1 when u, f ∈ F are
non-negative and bounded. By a standard approximation argument, it can be proved for the
unbounded case as well.

Lemma 3.A. For u ∈ F , let Φ(u) = (u ∨ 0) ∧ 1. Then Φ(u) ∈ F and the following holds.∫
X

fdΓ(Φ(u),Φ(u)) ≤
∫
X

fdΓ(u, u) ∀f ∈ F with f ≥ 0.

Let δ be as in Lemma 3.2, fix x0 ∈ X and let B′ = B(x0, δR), B′′ = B(x0, δR/8),
B = B(x0, R), 2B = B(x0, 2R). By Remark 2.6(2-3) it is enough to prove CS(Ψ) with a

scale factor of δ−1 rather than 2.
Let λ = c0Ψ(δR)−1 and define

h := C1Ψ(R)
V (x0, δR/8)

V (x0, R)
.

Integrating Lemma 3.2, we have the following:

Gλ1B′′(x) ≤ h, x ∈ B(x0, R)c, (3.a)

Gλ1B′′(x) ≥ 2h, x ∈ B(x0, δR), (3.b)

|Gλ1B′′(x)−Gλ1B′′(y)| ≤ c1
(d(x, y)

R

)θ
h, x, y ∈ B(x0, R) \B(x0, δR/2). (3.c)

Now define

ϕ(x) =
(

2 ∧ h−1Gλ1B′′(x)− 1
)+

=
(

1 ∧ (h−1Gλ1B′′(x)− 1)
)+

= Φ(h−1Gλ1B′′(x)− 1).

We need to make sure that ϕ ∈ F . For the purpose, let 1̂B(x1,s) ∈ F ∩C0 be a function which
is 1 inside B(x1, s), between 0 and 1 in B(x1, 2s) \ B(x1, s) and 0 outside B(x1, 2s). Then

h−1Gλ1B′′(x)− 1 = h−1Gλ1B′′(x)− 1̂2B(x) for x ∈ 2B, so

ϕ(x) = Φ(h−1Gλ1B′′(x)− 1) = Φ(h−1Gλ1B′′(x)− 1̂2B(x)) ∧ 1̂B ∈ F .

Using (3.a)–(3.c), it is easy to check that ϕ is a cut-off function for B′ ⊂ B that satisfies
Definition 2.5 (a)–(c). To complete the proof of CS(Ψ), we need to establish (2.5).
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Proposition 3.4. Let x1 ∈ X and f ∈ F . Let δ be defined by Lemma 3.2 and let I =
B(x1, δs) with 0 < s ≤ R and I∗ = B(x1, s). There exist c1, c2 > 0 such that for all f ∈ F ,∫

I

f2dΓ(ϕ,ϕ) ≤ c1(s/R)2θ
(∫

I∗
dΓ(f, f) + c2Ψ(s)−1

∫
I∗
f2dµ

)
. (3.4)

Proof. Step 1. We first prove that there exists a cutoff function ψ for B′ ⊂ B, which we do

not require to be continuous, such that∫
B

f2dΓ(ψ,ψ) ≤ c1
(∫

X

dΓ(f, f) + Ψ(R)−1
∫
X

f2dµ
)
. (3.d)

Let D = B(x0, R− ε) for some ε > 0 and define

FD = {f ∈ F : f̃ = 0 q.e. on X −D}.

Set

Eλ(f, g) = E(f, g) + λ

∫
fg dµ.

Let v = GDλ 1B′ ∈ F . Note that

v(x) ≤
∫
B′
gD(x, y)dµ(y) ≤ Ex[τD] ≤ cΨ(R), x ∈ D, (3.5)

by Theorem 2.15. By [FOT] Theorem 4.4.1, v ∈ FD and is quasi-continuous. Further, since
Y is continuous, v = 0 on D

c
. Let f ∈ F . Then∫

B

f2dΓ(v, v) ≤
∫
X

f2dΓ(v, v) =

∫
X

dΓ(f2v, v)−
∫
X

2fvdΓ(f, v).

Since v ∈ FD we have f2v ∈ FD, so by [FOT] Theorem 4.4.1,∫
X

dΓ(f2v, v) = E(f2v,GDλ 1B′) ≤ Eλ(f2v,GDλ 1B′) =

∫
X

f2v1B′dµ ≤ cΨ(R)

∫
B′
f2dµ,

where we used (3.5) in the last inequality. Using Cauchy-Schwarz and (3.5), we obtain∣∣∣∫
X

2fvdΓ(f, v)
∣∣∣ ≤ c(∫

X

v2dΓ(f, f)
)1/2(∫

X

f2dΓ(v, v)
)1/2

≤ cΨ(R)
(∫

B

dΓ(f, f)
)1/2(∫

X

f2dΓ(v, v)
)1/2

.

So, writing H =
∫
X
f2dΓ(v, v), J =

∫
B
dΓ(f, f), K =

∫
B
f2dµ, we have

H ≤ cΨ(R)K + cΨ(R)J1/2H1/2,
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from which it follows that H ≤ cΨ(R)K + cΨ(R)2J . Let ψ(x) = (v(x)/h) ∧ 1 = Φ(v(x)/h).
Computing similarly to Lemma 3.2 using [BGK] Theorem 3.1, ψ(x) = 1 for x ∈ B(x0, δR) so
that ψ is a cut-off function for I ⊂ I∗. Further, using Lemma 3.A, we have

∫
X
f2dΓ(ψ,ψ) ≤

h−2H. Thus (3.d) holds.

Step 2. In Step 2, we will consider the situation that either

I∗ ⊂ B(x0, δR) (3.6)

or else
I∗ ∩B(x0, δR/2) = ∅. (3.7)

Since ϕ ≡ 1 on B(x0, δR), (3.4) is clear if (3.6) holds. Thus, we consider when (3.7) holds.
Let ψs(x) be a cut-off function for I ⊂ I∗ given by Step 1. Let ϕ0(x) = h−1Gλ1B′′(x) ∈ F ,
a0 = infI∗ ϕ0 and ϕ1(x) = ϕ0(x) − a01̂I∗(x) ∈ F . Note that ϕ = Φ(ϕ1 + a0 − 1) on I∗. By

(3.c) we have
ϕ1(x) ≤ c(s/R)θ = L, x ∈ I∗.

Let

A =

∫
I

f2dΓ(ϕ,ϕ),

D =

∫
I∗
dΓ(f, f) + Ψ(s)−1

∫
I∗
f2dµ,

F =

∫
I∗
f2ψ2

sdΓ(ϕ1, ϕ1).

By Lemma 3.A, we have

A ≤
∫
I

f2dΓ(ϕ1, ϕ1) ≤ F =

∫
I∗
f2ψ2

sdΓ(ϕ1, ϕ0)

=

∫
I∗
dΓ(f2ψ2

sϕ1, ϕ0)−
∫
I∗
ϕ1dΓ(f2ψ2

s , ϕ0). (3.8)

For the first term in (3.8)∫
I∗
dΓ(f2ψ2

sϕ1, ϕ0) =

∫
X

dΓ(f2ψ2
sϕ1, ϕ0)

= Eλ(f2ψ2
sϕ1, h

−1Gλ1B′′)− λ
∫
X

f2ψ2
sϕ1ϕ0dµ

≤ Eλ(f2ψ2
sϕ1, h

−1Gλ1B′′) = h−1
∫
B′′

f2ψ2
sϕ1dµ = 0.

Here we used the fact that ϕ1 ≥ 0 on I∗ and that the support of ψs is in I∗, hence outside

B′′ (due to (3.7)).
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The final term in (3.8) is handled, using the Leibniz and chain rules and Cauchy-Schwarz,
as ∣∣∣∫

I∗
ϕ1dΓ(f2ψ2

s , ϕ0)
∣∣∣ ≤ 2

∣∣∣∫
I∗
ϕ1fψ

2
sdΓ(f, ϕ0)

∣∣∣+ 2
∣∣∣∫
I∗
ϕ1f

2ψsdΓ(ψs, ϕ0)
∣∣∣

≤ c
{(∫

I∗
ψ2
sdΓ(f, f)

)1/2
+
(∫

I∗
f2dΓ(ψs, ψs)

)1/2}(∫
I∗
ϕ2
1f

2ψ2
sdΓ(ϕ0, ϕ0)

)1/2
≤ c′D1/2LF 1/2,

where we used Step 1 in the final line. Thus we obtain A ≤ F ≤ cDL2 so that (3.4) holds.

Step 3. We finally consider the general case. When either (3.6) or (3.7) holds, the result is

already proved in Step 2. So assume that neither of them hold. Then I∗ must intersect both
B(x0, δR/2) and B(x0, δR)c, so s ≥ δR/4. We use Lemma 2.3 to cover I with balls Bi =
B(xi, c1R), where c1 ∈ (0, δ/4) has been chosen small enough so that each B∗i := B(xi, c1R/δ)

satisfies at least one of (3.6) or (3.7). We can then apply (3.4) with I replaced by each ball
Bi: writing s′ = c1R we have∫

Bi

f2dΓ(ϕ,ϕ) ≤ c2(s′/R)2θ
(∫

B∗
i

dΓ(f, f) + Ψ(s′)−1
∫
B∗

i

f2dµ
)
.

We then sum over i. Since no point of I∗ is in more than L0 (not depending on x0 or R) of
the B∗i , and c1s ≤ s′ ≤ s, we obtain (3.4) for I. �
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