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Abstract. We announce results which prove the existence of the spectral dimension d,  for 
Sierpinski carpets in two dimensions. Our method employs the Einstein relation I =  d,  - d , .  
Using this, numerical calculations of the resistance of approximations to the Sierpinski 
carpet yield an accurate estimate for d , .  

There has been much recent interest in dynamical phenomena on fractals, e.g., vibration, 
diffusion, field theories, etc [l]. These are found to be governed by the spectral 
dimension, d , ,  of the fractal. d,  is the ‘density of states’ for the fractal, and is generally 
defined by 

N ( w )  - ad,/’ as w + o 3  (1) 

where N ( w )  is the number of eigenvalues less than or equal to w [ 2 ] .  Restating (1) 
in more formal language we have 

In N ( w )  
d , = 2  lim ~ 

W -  lnw 

It is not obvious that the limit in ( 2 )  exists. For finitely ramified fractals renormalisa- 
tion methods can be applied rigorously and exactly, and both establish the existence 
of the limit and provide techniques for its evaluation [3]. These methods do not work 
effectively on infinitely ramified fractals such as the Sierpinski carpets ( S C S ) .  

In this letter we: (a) announce results which prove the existence of the limit in ( 2 )  
for the Sierpinski carpets; (b) establish rigorously for the scs the Einstein relation 
connecting d ,  with the conductivity exponent f [ 2 , 4 ] :  

2 d f / d ,  = df+ (3) 

and (c) estimate d,  numerically by calculations of conductivities of approximations to 
the sc. 

Following [5] we define a family of S C S .  We start with the unit square Fo = [0, 112 
in R2 and divide it into b2 equal subsquares. We cut out a central symmetric block of 
I’ subsquares and denote the set remaining by F , .  Thus F,  = Fo- (f - 1/2b, f +  1/2b)’. 
This procedure is next repeated for the subsquares which remain, and is then iterated 
indefinitely. We denote by F,, the set remaining at the nth stage: F,, consists of ( b2 - I*)‘‘ 
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subsquares of side b-". The (b ,  I )  Sierpinski carpet (which we denote by sc(b, I ) )  is 
defined by 

m 

F =  n F,. 
I l = O  

F is a fractal subset of R2, and has fractal dimension df= h ( b 2  - l*)/ln b. 
Consider a thin plate F,, with outside corners labelled A, B, C, D. A potential 

difference is applied between sides AB and CO, while a zero flux boundary condition 
is applied on sides BC and DA. Let R ,  be the resistance of F,; we normalise the 
conductivity of the material so that Ro = 1. 

Theorem 1 .  
(a) There exists a constant cl > 1 such that 

c;' R,R, s R,,,  s c1 R,R, for all n, m 2 0. 

(b) There exists p > 0 such that 

c l ' p "  s R ,  cl p" for all n 3 0. 

We give a sketch of the proof below; full details will appear in [6]. 

Remarks. 
1. The method of proof does not give the value of p. 
2. We expect that R ,  - cp" as n + 00, but do not have a proof for this. 

The resistance exponent f may be defined by 

We relate f and d, by considering the small time asymptotics of diffusion on F. 
(A construction of this diffusion process X(t), ( 3 0 ,  was given in [7].) Set 

In[ (b' - 12)p ]  
In b dk = d :  = 2 d f / d k  

(7) 

Theorem 2. 

measure p on F, so that for A G  F, 

Prob(X, E AIXo = x) = 

(a) X has a probability transition density p ( t ,  x, y )  with respect to Hausdorff 

p (  t, x, y)p(dy) .  I, 
(b) p ( t ,  x, y )  is continuous on ( 0 , ~ )  x F x F. 
(c) There exist constants c 2 ,  . . . , cs such that for all x, y E F, 0 < t s 1, 

CZQ(C3lX -A ,  t )  S P ( t ,  x, Y )  6 C,@.(C5/X -A ,  t ) .  (8) 

This theorem follows from theorem 1 and the various estimates on X in [7,8] by 
the techniques used in [9,10]. Full details will appear in [4]. 
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Remarks. 
1. This form of the transition density agrees with that given for the Sierpinski 

gasket in [9,10]. See also the remarks in [ l ,  p 7101. 
2.  The cut-off t G 1 in (8) arises because we are considering diffusion on a bounded 

set. If  we consider instead diffusion on the unbounded carpet P = {x: b - k x  E F for 
some k 5 0}, then (8) holds for 0 < t < CO. 

Setting x = y  in ( 8 )  we deduce that c 2 d  f d > ” 2 p ( t ,  x, x )  S c4. Hence (see [ l ,  p 7061 
or [lo,  p 6191) there exist constants c6, c, such that c6ud\”*S N ( w )  G c , w ~ ~ “ ’ ,  and the 
existence of the limit in ( 2 )  is now apparent. Thus d , = d :  and so we have also 
established the Einstein relation (3) for the S C S .  

We now sketch the proof of theorem 1. Let G, be the network (graph) obtained 
from F, by replacing each square of side b - ”  by a crosswire of four resistors (parallel 
to the axes), each with resistance 4. Let R? be the resistance of G, ; note that RF = 1. 

Lemma 3. For all n, m 5 0, we have R, , ,  S 2 R f R , .  

Prooj Using standard electrical circuit theory [ 113, R ,  can be obtained as the solution 
to the variational problem of minimising the energy dissipation of a flow of total flux 
1 across F,: 

Let Z, denote the flow on F, at which the minimum is attained. Define I* ,  by reflection 
in the diagonal x 1  = x2 (see figure 1). 

Figure 1. (a)  The flow I,,, on F,,, ; (b)  the flow IT, after reflection across the diagonal. The 
unit square has been divided into b2 subsquares, and the central block of I’ subsquares 
removed. 

By symmetry I, l Z $ 1 2 = j F m  lZm12= R,. Now let J,  be the equivalent minimising 
flow on the network G,. If we consider one crosswire x in G,, we will have (signed) 
flows on the four branches, K x l ,  K x 2 ,  K x 3 ,  K x 4 ,  where Zq=l K ,  =0, and the energy 
dissipation in the crosswire is 

1 4  
E,=- C K : j .  

2 j = l  

Write K ,  = max(Kxj, 0 )  for the total flux through the crosswire. We now seek to 
construct a matching flow on the piece of the carpet F,,, corresponding to the crosswire 
x. So let L, be a flow on b-“ F, obtained by adding linear combinations of I,, I*, , 
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and  their rotations to obtain a flow with inputs K, ,  , . . . , Kx4 on the four outer edges 
of b-"F,. It is straightforward to check that 

1 L,12 = K : R ,  2R,E,. ( 9 )  s b -  'IF,,, 

We now construct a flow L on F,,, as follows. Starting with G, and  J, ,  replace each 
crosswire x with a copy of b-"F,, and the flow in the crosswire by the flow L,. 
Summing over crosswires we have, from (9), 

r r 

Hence R,,,  S 2R,R?. 

The proof of lemma 3 used the characterisation of resistance as the solution to a 
variational problem. There is a dual characterisation of conductivity as the minimum 
energy of a potential with total potential difference 1 .  We shall not go through the 
details, but the result corresponding to lemma 3 is given by the following. 

Lemma 4. R, , ,  3 &R:R,  for all n, m 3 0.  

Proofoftheorem 1. (a )  is immediate from lemmas 3 and  4, with cI = 486. Let x ,  = cL'R,, 
y ,  = c , R ,  ; then x ,  is supermultiplicative (i.e. x,,, 3 x,x,) and y ,  is submultiplicative. 
So, using the standard (and  easily proved) properties of submultiplicative sequences 
[ 121: 

As x,/y,  is constant, 0 = 0' = p say, and ( 5 )  is now immediate. 

and  cutting arguments [ 131 give, for sc( b, I), with I = bx 
We now turn to the problem of determining the value of p. Straightforward shorting 

1 
X S p S -  

1 - -x  1 - x '  
1 -- 

Using (3) this gives bounds on d , ;  for s c ( 3 ,  l ) ,  for example, we deduce 

1.674<2In8/ ln  1 2 S d s ~ 2 I n 8 / I n ( 2 8 / 3 ) < 1 . 8 6 2 .  (11) 

Theorem 1 together with lemmas 3 and 4 implies that both In( R , ) /  n and In( R ? ) /  n 
converge to In p, so that we can estimate p from either the resistance of F, or G,. Let 
H,, , for n 2 0, m 3 0, denote the network obtained from F, by replacing each subsquare 
of side b-" by a b" x b" network of crosswires. Thus as m + 00, H,, converges to the 
set F,, and writing R ( H , , )  for the resistance of H,,, we have R(H, , , )  = RY and 

Table 1 gives R ( H , , )  for sc(3, 1 )  for 1 ZG n G 7, n S m S 7. For 0 s n S 5 an estimate 
of R(H, , ) ,  obtained by Shanks' transform from the last three values, is added. 

The computations were performed by Gaussian relaxation over a grid covering one  
quarter of the carpet. A coarse mesh (with size equal to the smallest holes in the 
carpet) was used to obtain the diagonal elements of table 1. Successive mesh 
refinements, in each case by a (linear) factor of 3, were used to improve the approxima- 
tion to the solution of the differential equation. The largest grid used for s c ( 3 , l )  was 

R(Hnr) = Rn. 
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Table 1. R ( H , , )  for s c ( 3 ,  1). 

n 1 2 3 4 5 6 7 

m 
1 1.400 000 
2 1.307 984 
3 1.282 981 
4 1.277 129 
5 1.275 778 
6 1.275 465 
7 1.275 392 
cc 1.275 37 

1.793 474 
1.650 836 2.252 722 
1.613 843 2.068 868 2.820 697 
1.605 221 2.021 464 2.589 707 3.530 305 
1.603 227 2.010414 2.530 181 3.241 082 4.418 167 
1.602 764 2.007 851 2.516 289 3.166 543 4.056 182 5.524 280 
1.602 62 2.007 08 2.512 06 3.140 66 

of size 1094 x 1094. Once a solution had been obtained on this grid, an extra generation 
of holes was added, and the code reverted to the coarsest possible grid to obtain the 
next term down the diagonal (table 1). Computation took about 50 h on a S U N  4/ 110. 
The computed energy dissipation converged rapidly, but required double precision 
arithmetic. 

One might expect, from intuitive grounds, that R , /  R , - ,  would converge more 
rapidly than R F I R y - ,  . However, for a given grid size, one has two more values of 
the ratio R $ / R : - l  available. Moreover, we have only three entries in the column 
n = 5, and the numerical extrapolation appears suspect, which increases further the 
advantage of computing a, = R ? / R y - ,  rather than R , / R , - ,  . For other carpets we 
therefore merely computed a,, (table 2 ) .  

As before, we used Shanks’ transform to estimate the value for n =a. The final 
row in table 2 gives our estimate for d, based on these calculations. 

In many situations the Einstein relation (3)  has been used to obtain f from d , ,  
where d, is first estimated by random walk simulations. For the scs considered here, 
however, extremely lengthy simulations would be required to achieve results as accurate 
as those in table 2. 

The results of table 1 for the resistances F , ,  F,, F3 for sc(3,  1 )  may be compared 
with the experiments of [14], and we see that the agreement is satisfactory. Note 
however from tables 1 and 2 that the ratio R I / R o  is a poor approximation to p. We 
remark that the values of p we obtained are within 1% of ( b 2 + 1 2 ) / ( b 2 - l ’ ) ,  but that 
equality does not hold. 

Table 2. Values of R:/R:,, for various scs .  

n SC(3, l )  s c ( 4 , 2 )  sc (5 .1)  s c ( 5 , 3 )  

1 1.400 000 1.875 000 1.133 333 2.368 422 
1.093 240 2.164 505 2 1.281 053 1.699 436 

3 1.256 066 1.675 619 1.089 212 2.142 457 
2.140 565 4 1.252 129 1.673 127 1.088 870 

5 1.251 572 1.672 879 1.088 841 2.140 394 
6 1.251 497 
7 1.251 487 
ffi 1.25 1 49 1.672 85 1.088 84 2.140 38 

1.569 28 4 1.805 25 1.656 92 1.974 83 
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