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1. Introduction.
Researchers have increasingly been studying models from economics and from the

natural sciences where the underlying randomness contains jumps. To give an example
from financial mathematics, the classical model for a stock price is that of a geometric
Brownian motion. However, wars, decisions of the Federal Reserve and other central
banks, and other news can cause the stock price to make a sudden shift. To model this,
one would like to represent the stock price by a process that has jumps.

This paper is a survey of some aspects of stochastic differential equations (SDEs)
with jumps. As will quickly become apparent, the theory of SDEs with jumps is nowhere
near as well developed as the theory of continuous SDEs, and in fact, is still in a relatively
primitive stage. In my opinion, the field is both fertile and important. To encourage
readers to undertake research in this area, I have mentioned some open problems.

Section 2 is a description of stochastic integration when there are jumps. Section 3
describes a number of the most important types of SDEs that involve jumps. In Section 4 I
discuss a few pathwise uniqueness results, and in Section 5 I discuss some results relating to
martingale problems. Section 6 concerns the regularity of harmonic functions with respect
to the corresponding integral operators.

A forthcoming book by Applebaum [Ap] contains much information on the subject
of this paper, as well as applications to finance.

Acknowledgment. I would like to thank Jim Pitman for his encouragement to write
this paper, Moritz Kassmann for his very helpful suggestions, and David Applebaum for
graciously providing me material from his book.

2. Stochastic calculus.
Before we can describe SDEs with respect to jump processes, we need to talk a

bit about the differences between the stochastic calculus for continuous processes and for
processes with jumps. Some good references for this are the volumes by Dellacherie and
Meyer [DM1], [DM2], Meyer’s course [Me], and the books by Elliott [El], Jacod [Jd], and
Protter [Pr]. I have some notes on the web at [Ba5]; my notes [Ba6] provide further
background on predictability.

Suppose we are given a probability space (Ω,F ,P) and a filtration {Ft}. We suppose
that the filtration satisfies the “usual conditions,” which means that Ft is right continuous
and each Ft is complete. We say that Xt is right continuous with left limits if there exists
a null set N so that if ω /∈ N , then limu↓tXu(ω) = Xt(ω) for all t and lims↑tXs(ω) exists
for all t. The French abbreviation for this is “cádlág.” Given a process Xt that is right
continuous with left limits, let Xt− = lims↑tXs and ∆Xt = Xt −Xt−.

A stochastic process X can be viewed as a map from [0,∞) × Ω to (usually) R.
We define a σ-field P on [0,∞)×Ω, called the predictable σ-field or previsible σ-field, by
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letting P be the σ-field on [0,∞) × Ω generated by the class of stochastic processes that
are adapted to the filtration {Ft} and have left continuous paths. One can show that P is
also generated by the class of processes H(s, ω) = G(ω)1(a,b](s), where G is bounded and
Fa-measurable.

Suppose At is an Ft-adapted process that is right continuous with left limits whose
paths are increasing, and let us suppose for simplicity that At is integrable for each t.
Since At ≥ As, then E [At | Fs] ≥ E [As | Fs] = As, so trivially At is a submartingale. By
the Doob-Meyer decomposition, there exists a predictable increasing adapted process Ãt

such that

At = martingale + Ãt.

We call Ãt the compensator or dual predictable projection of At. If At has paths of
bounded variation, we write At = A+

t − A−t , where A+
t and A−t are increasing processes,

and then define Ãt = Ã+
t − Ã−t .

Before defining the stochastic integral, we discuss the decomposition of square in-
tegrable martingales. A martingale Mt is square integrable if supt EM2

t <∞.
If Mt is a square integrable martingale that is right continuous with left limits, for

each integer i let Ti1 = inf{t : |∆Mt| ∈ [2i, 2i+1)}, Ti2 = inf{t > Ti1 : |∆Mt| ∈ [2i, 2i+1)},
and so on. Since Mt is right continuous with left limits, Tij →∞ as j →∞ for each i. Let
{Sm} be some ordering of the {Tij}. We then have a countable sequence of stopping times
Si such that every jump of M occurs at one of the Si and ∆MSi

is a bounded random
variable for each i.

Let us set Ai(t) = ∆MSi
1(t≥Si) and set Mi(t) = Ai(t)− Ãi(t). One can then prove

the following theorem; see [Me], T.II.11 or [Ba5], Th. 2.3.

Theorem 2.1. Suppose Mt is a square integrable martingale that is right continuous with

left limits and Mi(t) is defined as above. Then each Mi(t) is a square integrable martingale

and
∑∞

i=1Mi(t) converges in L2 for each t. If M c
t = Mt−

∑∞
i=1Mi(t), it is possible to find

a version of M c
t that is a square integrable martingale with continuous paths. Moreover,

M c and the Mi are mutually orthogonal.

The bit about finding a version of M c is due to the fact that the infinite sum converges in
L2, but there is a null set that depends on t. In fact, it is possible to arrange matters so
that there a single null set. Saying two martingales N1(t) and N2(t) are orthogonal means
here that E [N1(T )N2(S)] = 0 for every pair of stopping times S and T .

Recall that if Mt is a martingale, then 〈M〉t is the unique increasing predictable
process such that M2

t − 〈M〉t is a martingale. The existence and uniqueness of 〈M〉t is
guaranteed by the Doob-Meyer decomposition. If Mt is a square integrable martingale
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whose paths are left continuous with right limits, define

[M ]t = 〈M c〉t +
∑
s≤t

|∆Ms|2.

Here M c is the continuous part of M given in Theorem 2.1. One can show, using Theorem
2.1, that M2

t − [M ]t is a martingale, and in particular, EM2
t = E [M ]t.

With this as background, we can now proceed to a definition of stochastic integrals
with respect to a square integrable martingale. We want our integrands to be predictable.
Let us take a moment to explain why this is very natural. Let Mt = 1 + Pt∧1 − t ∧ 1, i.e.,
a Poisson process minus its mean stopped at time 1, and then with 1 added so that Mt

is nonnegative. Let us suppose that Mt is the price of a stock, and Hs is the number of
shares we hold at time s. With this investment strategy, it is not hard to see that the net
profit (or loss) at time 1 is

∫ 1

0
HsdMs. Let T be the first time the Poisson process jumps

one. If we were allowed to choose Hs to be zero for s < T and 1 for T ≤ s, our profit
at time 1 would be 1 on the event that (T ≤ 1) and 0 on the event (T > 1); we would
have made a profit without any risk (if Mt has paths of bounded variation, the stochastic
integral and Lebesgue-Stieltjes integral will coincide). The problem is that we looked an
instantaneous amount into the future to see when the Poisson process jumped. We can’t
allow that, and the way to prevent this is to require Hs to be predictable.

Let us give the definition of stochastic integral. Suppose Mt is a square integrable
martingale with paths that are right continuous with left limits. If

Hs(ω) =
m∑

i=1

Gi(ω)1(ai,bi](s), (2.1)

where Gi is bounded and Fai
-measurable, define

Nt =
∫ t

0

HsdMs =
m∑

i=1

Gi(Mt∧bi −Mt∧ai).

Just as in [Ba3], pp. 43–44, the left hand side will be a martingale and very similarly to
the proof of [Ba3], Section I.5 with [ ] instead of 〈 〉, N2

t − [N ]t will be a martingale, where
[N ]t =

∫ t

0
H2

sd[M ]s.
If H is only P-measurable and satisfies E

∫∞
0
H2

sd[M ]s < ∞, approximate H by
integrands Hn

s where each Hn
s is of the form given in (2.1). Define Nn

t =
∫ t

0
Hn

s dMs. By
the same proof as in [Ba3], Section I.5, the martingales Nn

t converge in L2. We call the
limit Nt =

∫ t

0
HsdMs. The stochastic integral is a square integrable martingale, its paths

are right continuous with left limits, its definition is independent of which sequence Hn
s

we choose, and [N ]t =
∫ t

0
H2

sd[M ]s.
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We want to generalize the definition of stochastic integral to more general processes.
For example, a Cauchy process, even if stopped at a fixed time, is not square integrable,
but we should be able to handle stochastic integrals with respect to a Cauchy process by
looking at the large jumps separately.

We say Mt is a local martingale if there exist stopping times Tn increasing to
infinity such that for each n the process Mt∧Tn

is a uniformly integrable martingale. A
semimartingale is a process of the form Xt = X0 +Mt + At, where X0 is a finite random
variable that is F0-measurable, Mt is a local martingale, and At is a process whose paths
have bounded variation on [0, t] for each t. A key result concerning semimartingales is the
following reduction theorem; see [Me], T.IV.8 or [Ba5], Th. 5.4. This is easy in the case of
continuous semimartingales, but not at all in the case of semimartingales that have jumps.

Theorem 2.2. Suppose Xt is a semimartingale. There exist stopping times Sn ↑ ∞ such

that Xt∧Sn
= Un

t + V n
t , where Un is a square integrable martingale and V n is a process

whose paths have bounded variation and the total variation of V n over the time interval

[0,∞] is finite. Moreover, Un
t = Un

Sn
and V n

t = V n
Sn

for t ≥ Sn.

If Xt is a local martingale and Sn are stopping times such as in Theorem 2.2, set
Xc

t∧Sn
= (Un)c

t for each n and [X]t∧Sn = 〈Xc〉t∧Sn
+

∑
s≤t∧Sn

∆X2
s , where (Un)c is defined

as in Theorem 2.1. It is not hard to see that these definition are independent of the choice
of stopping times Sn.

Next we weaken the assumptions on H. A predictable process Hs is locally bounded
if there exist stopping times Rn ↑ ∞ and constants Kn such that the process H is bounded
by Kn on [0, Rn]. If H is locally bounded and X is a semimartingale, we define

∫ t

0
HsdXs

by setting ∫ t

0

HsdXs =
∫ t

0

Hs∧Rn
dUn

s∧Sn
+

∫ t

0

Hs∧Rn
dV n

s∧Sn

when t ≤ Rn ∧ Sn; the first integral is a stochastic integral with respect to the square
integrable martingale Un and the second is a Lebesgue-Stieltjes integral. SinceRn∧Sn ↑ ∞,
this defines

∫ t

0
HsdXs for all t. It can be shown that this integral does not depend on the

choice of Rn and Sn.

Itô’s formula (see [Me], T.III.3 or [Ba5], Th. 4.1) is

Theorem 2.3. Suppose X is a semimartingale and f is a C2 function. Then f(Xt) is

also a semimartingale and we have

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs + 1
2

∫ t

0

f ′′(Xs−)d〈Xc〉s

+
∑
s≤t

[f(Xs)− f(Xs− − f ′(Xs−)∆Xs].

5



Note that f ′(Xs−) is a left continuous process, hence predictable. For d-dimensional
processes, each of whose components is a semimartingale, the obvious generalization holds.

3. Jump processes.
SDEs with respect to Lévy processes. The classical SDE with respect to Brownian motion
is

dXt = σ(Xt)dWt + b(Xt)dt, (3.1)

where Wt is a Brownian motion. The simplest analogue of this in the jump case is

dXt = a(Xt−)dZt, (3.2)

where Zt is a Lévy process. To be even more specific, we might take Zt to be a symmetric
stable process of index α. Already, even in this very special case, there are several interest-
ing things one can say. Note that we write Xt− instead of Xt in order that the integrand
be predictable.

It would be natural to allow a process to have both a continuous component and a
jump component, so one might want to consider the SDE

dXt = σ(Xt)dWt + b(Xt)dt+ a(Xt−)dZt. (3.3)

Poisson point processes. For many applications, (3.3) is not a very good model. For
example, suppose one wants to model a stock price in such a way that the underlying
randomness is given by a jump process. For simplicity let us consider (3.2) instead of
(3.3). If Zt has a jump of size z, then Xt will have a jump of size a(Xt−)z. However,
one might very well want Xt to have a jump whose size depends on Xt− and z, but is
not necessarily linear in z. If the underlying randomness has a big jump, the behavior of
X might be qualitatively different from the case where the underlying randomness has a
small jump.

To obtain models with this extra versatility, we need to consider Poisson point
processes. See [Sk] for details. Let (S, λ) be an arbitrary measure space (letting S = R
and λ be Lebesgue measure will usually do). For each ω ∈ Ω let µ(ω, dt, dz) be a measure
on [0,∞)× S. The random measure µ is a Poisson point process if (i) for each set A ⊂ S

with λ(S) <∞ the process µ([0, t]×A) is a Poisson process with parameter λ(A) and (ii)
if A1, . . . , An are disjoint subsets of S with λ(Ai) < ∞, then the processes µ([0, t] × Ai)
are independent.

Define a non-random measure ν by ν([0, t] × A) = tλ(A). If λ(A) < ∞, then
µ([0, t] × A) − ν([0, t] × A) is the same as a Poisson process minus its mean, hence is a
martingale.
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We can define a stochastic integral with respect to the compensated point process
µ− ν as follows. Suppose H(s, z) = H(ω, s, z) is of the form

H(s, z) =
n∑

i=1

Ki(ω)1(ai,bi](s)1Ai(z), (3.4)

where for each i the random variable Ki is Fai-measurable and Ai ⊂ S with λ(Ai) < ∞.
We define

Nt =
∫ t

0

∫
H(s, z) (µ− ν)(ds, dz) =

n∑
i=1

Ki(µ− ν)(((ai, bi] ∩ [0, t])×Ai).

By linearity it is easy to see that Nt is a martingale. It is also easy to see that N c = 0 and

[N ]t =
∫ t

0

∫
H(s, z)2µ(ds, dz). (3.5)

With a little work one can show

〈N〉t =
∫ t

0

∫
H(s, z)2ν(ds, dz). (3.6)

Suppose H(s, z) is a predictable process in the following sense: H is measurable
with respect to the σ-field generated by all processes of the form (3.4). Suppose also that
E

∫∞
0

∫
H(s, z)2ν(ds, dz) <∞. If we take processes Hn of the form (3.4) converging to H

in an appropriate way, the corresponding Nn
t =

∫ t

0

∫
Hn(s, z)d(µ− ν) will converge in L2,

and we call the limit Nt the stochastic integral of H with respect to µ− ν. One can show
that (3.5) and (3.6) are still valid. One may think of the stochastic integral as follows: if µ
assigns mass one to the point (t, z), then Nt jumps at this time t and the size of the jump
is H(t, z).

Now consider a stochastic differential equation with respect to a compensated Pois-
son point process. Look at

dXt = σ(Xt) dWt + b(Xt) dt+
∫
F (Xt−, z) d(µ− ν), X0 = x0. (3.7)

This means

Xt = x0 +
∫ t

0

σ(Xs)dWs +
∫ t

0

b(Xs)ds+
∫ t

0

∫
F (Xs−, z)(µ− ν)(ds, dz),

where Wt is a standard Brownian motion on R.
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Martingale problems. For simplicity we consider here the SDE (3.7) with σ ≡ b ≡ 0.
Suppose f ∈ C2 and suppose that Xt is the solution to

dXt =
∫
F (Xt−, z) d(µ− ν). (3.8)

By Itô’s formula (Theorem 2.3),

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs +
∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

The stochastic integral term is a martingale. We can write f(Xs) as f(Xs− + ∆Xs). The
jump of Xt at time s is equal to F (Xs−, z) if µ assigns mass one to the point (s, z), and
so f(Xt)− f(X0) is equal to a martingale plus∫ t

0

∫
[f(Xs− + z)− f(Xs−)− f ′(Xs−)z]F (Xs−, z)µ(ds, dz).

This in turn is equal to a martingale plus∫ t

0

∫
[f(Xs− + z)− f(Xs−)− f ′(Xs−)z]F (Xs−, z)ν(dz, ds)

=
∫ t

0

∫
[f(Xs− + z)− f(Xs−)− f ′(Xs−)z]F (Xs−, z)λ(dz)ds.

If we now set
Lf(x) =

∫
[f(x+ z)− f(x)− f ′(x)z]F (x, z)λ(dz), (3.9)

we then see that

f(Xt)− f(X0)−
∫ t

0

Lf(Xs−)ds

is a martingale. Since X has only countably many jumps, then the Lebesgue measure
of the set of times where Xs 6= Xs− is 0, and hence f(Xt) − f(X0) −

∫ t

0
Lf(Xs)ds =

f(Xt)− f(X0)−
∫ t

0
Lf(Xs−)ds. Therefore

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a martingale.
These calculations (and analogous ones when σ or b in (3.7) is nonzero) are the

motivation for what is known as the martingale problem. In this formulation we take Xt

to be the canonical coordinate process. One defines an integral operator by a formula such
as (3.9) and then says that a probability measure P solves the martingale problem started
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at a point x0 if P(X0 = x0) = 1 and f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds is a martingale under

P whenever f ∈ C2. Note here that a solution is a probability, not a process.
Since the number of large jumps is finite in number over any finite time interval and

the large jumps do not affect the existence or uniqueness of solutions, and one wants not
to worry about the integrability of

∫
|z|F (x, z)λ(dz), one often sees operators of the form

Lf(x) =
∫

[f(x+ z)− f(x)− 1(|z|≤1)f
′(x)z]n(x, dz). (3.10)

If n(x, dz) does not depend on x, the reader will note that in this case (3.10) is the
infinitesimal generator of a Lévy process.

An example of an operator such as (3.10) is to let

n(x, dz) =
a(x, z)
|z|1+α

dz, (3.11)

where a is bounded above and below by positive constants, and 0 < α < 2. If a is constant,
we have the infinitesimal generator of a symmetric stable process of index α.

The extension of the notion of martingale problem to higher dimensions causes no
problems. One also often sees operators of the form L+M, where L is as in (3.10) and

Mf(x) = 1
2σ(x)2f ′′(x) + b(x)f ′(x).

This corresponds to adding a diffusion and drift term to the jump operator. Again, the
higher dimensional analogues are what one expects.

Pseudodifferential operators. With L as in (3.10), let us see what we get when we apply
L to the function f(x) = eiux. We obtain

Lf(x) = eiux

∫
[eiuz − 1− iuz1(|z|≤1)]n(x, dz).

In the case where n(x, dz) does not depend on x, i.e., n(x, dz) = n(dz) for all x, this implies
that the Fourier transform of L is ψ(u), where

ψ(u) =
∫

[eiuz − 1− iuz1(|z|≤1)]n(dz).

More generally, when n(x, dz) does depend on x, we let

ψ(x, u) =
∫

[eiuz − 1− iuz1(|z|≤1)]n(x, dz),

and we call ψ(x, u) the symbol corresponding to the operator L.
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By the uniqueness of the Fourier transform, we can specify an operator by presenting
n(x, dz) or we can specify the operator by giving its symbol ψ(x, u).

Dirichlet forms. Suppose one considers the operator Lf(x) = (a(x)f ′(x))′. For this to
make sense in terms of the usual notion of derivative, we need a to be differentiable. If g
is C∞ with compact support, an integration by parts gives

−
∫
g(x)Lf(x) dx =

∫
g′(x)a(x)f ′(x) dx.

The expression on the right makes sense for any measurable and bounded a, as long as f
and g are differentiable with compact support, say, and is called a Dirichlet form, written
E(f, g).

Under minimal hypotheses, a Dirichlet form will determine the process. See [FOT]
for the basic theory of Dirichlet forms.

If we define
E(f, f) =

∫ ∫
[f(y)− f(x)]2J(dx, dy), (3.12)

where the measure J is symmetric, the associated process will be of jump type. A special
case is when J(dx dy) = |x−y|−1−αdx dy, and the associated process is a symmetric stable
processes of index α. We will briefly consider some properties of processes associated to
the Dirichlet form given in (3.12), called symmetric jump processes, in the case where

J(dx, dy) =
a(x, y)

|x− y|1+α
dx dy (3.13)

and also higher dimensional analogues, where 0 < α < 2, a is bounded above and below
by positive constants, and a(x, y) = a(y, x) for all x and y. Here the questions concern
not uniqueness, since that is covered by the general theory of Dirichlet forms, but instead
properties of the corresponding process. (But see also [AS].)

4. Pathwise uniqueness.
When is the solution to (3.2) or (3.7) pathwise unique? When the coefficients are

Lipschitz coefficients, then the standard Picard iteration procedure proves uniqueness. For
example, for (3.7) we have the following, due to [Sk].

Theorem 4.1. If σ and b are bounded and Lipschitz,
∫

supx |F (x, z)|2λ(dz) <∞ and∫
|F (x, z)− F (y, z)|2λ(dz) ≤ c1|x− y|2

for all x, y, then there exists a solution to (3.7) and that solution is pathwise unique.

Concerning (3.2), again, if a is bounded and Lipschitz continuous, one would expect
pathwise uniqueness, and indeed that is the case. In one dimension, however, in view of the

10



result of Yamada-Watanabe [YW] for SDEs with respect to a one dimensional Brownian
motion, one would hope that much weaker conditions would suffice for uniqueness. For
example, the Yamada-Watanabe sufficient condition for pathwise uniqueness for diffusions
is that

∫ ε

0
ρ(x)−2dx = ∞ for all ε > 0, where ρ is the modulus of continuity: |σ(x)−σ(y)| ≤

ρ(|x− y|) for all x and y.
For solutions to (3.2) we have the following; see [Km2] and [Ba4].

Theorem 4.2. Suppose α > 1, Zt is a one dimensional symmetric stable process of index

α, and |a(x)− a(y)| ≤ ρ(|x− y|) for all x and y and∫ ε

0

1
ρ(x)α

dx = ∞

for every ε > 0. Then for every x0 ∈ R, the solution to

dXt = a(Xt−)dZt, X0 = x0,

is pathwise unique.

This result is sharp. As a corollary, if a is Hölder continuous of order 1/α, then we
have pathwise uniqueness. Note that the smaller α, the more continuity is required.

What happens when α ≤ 1? When α < 1, the paths of Zt are of bounded variation
on finite time intervals, and I initially thought only continuity and appropriate boundedness
of a sufficed [Ba4]. However the solution constructed there, although measurable with
respect to the σ-field generated by Z, is not adapted. In fact, when α ≤ 1, the condition
that a be Lipschitz continuous turns out to be sharp; see [BBC]. Probably the Lipschitz
continuity condition can be weakened by a log term, but it does not suffice to let a be
Hölder continuous of order β for any β < 1.

For diffusions Nakao [Na] showed that bounded variation of σ suffices for (3.1)
to have a unique solution, and LeGall [LG] improved this to σ having finite quadratic
variation. What is the appropriate analogue of this for the equation (3.2)?

A paper concerning pathwise existence along somewhat different lines is Williams
[Wi]. Here the stochastic integral is not the Itô integral, but instead the rough integral of
Lyons (cf. [Ly]), and the issue is existence.

Other papers related to pathwise properties of SDEs with jumps are [Ro] on back-
ward SDEs, [JMW] on approximations of solutions, and [AT], [Fu], [FK], and [Ku] on flows
of solutions.

5. Martingale problems.
In this section let us discuss existence and solutions to martingale problems such as

those mentioned in Section 3. When there exists a non-degenerate diffusion component,
that term dominates the situation, and uniqueness holds. We have the following theorem
of Stroock [St]
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Theorem 5.1. Suppose

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x) (5.1)

+
∫

Rd\{0}
[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]n(x, dz)

and

(a) a is bounded and continuous and strictly elliptic;

(b) b is bounded and measurable;

(c)
∫

A
|z|2

1+|z|2n(x, dz) is bounded and continuous for each A ⊂ Rd \ {0}.

Then there is a unique solution to the martingale problem for L started at any x0 ∈ Rd.

This result should also be compared with that of Komatsu [Km1] and that of Lepeltier
and Marchal [LM].

Suppose now that there is no diffusion component present. For early works see
[Ts1], [Ts2], and [TTW]. A special case of a result of Komatsu [Km4] is the following.

Theorem 5.2. Suppose

Lf(x) =
∫

Rd\{0}
[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]

[ 1
|z|d+α

dz + n0(x, dz)
]

for some α ∈ (0, 2), n∗(dz) = supx n(x, dz), and∫
(1 ∧ |z|α)n∗(dz) <∞.

Then there is a unique solution to the martingale problem for L started at any point x0.

See also [NT].
Martingale problems are closely related to the notion of weak uniqueness for SDEs.

Concerning weak existence of solutions for (3.2) see [PZ], [Za1], and [Za2].

Another approach that has been explored has been the use of pseudodifferential
operators. See works of Komatsu, Jacob, Hoh, and Schilling: [Km3], [HJ1], [HJ2], [Ho1],
[Ho2], [Ho3], [Ho4], [JL], [Ja1], [Ja2], [Ja3], [JS], [Ja4], and [Ja5].

A recent result along these lines is that of Kolokoltsov [Kl2]. If ψi(u), i = 1, . . . , n,
are the symbols associated to Lévy processes satisfying certain conditions and ai(x) are
suitable functions of x, then there is a unique solution to the martingale problem associated
to the symbol

ψ(x, u) =
n∑

i=1

ai(x)ψi(u).
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Can one obtain a similar result when we have an infinite sum instead of a finite one?

In most of the above results, the operators are the sum of a finite number of integral
terms plus a lower order term. There are fewer papers that handle variable order terms
without assuming a considerable amount of continuity in the x variable. One such paper is
[Ba1]. This paper deals with one-dimensional processes, and the exact conditions are rather
complicated. One can give an example, though, that illustrates the theorem. Suppose L
is given by (3.10), where

n(x, dz) =
1

|z|1+α(x)
dz. (5.2)

Qualitatively, this says that at a point x, the process behaves like a symmetric stable
process of order α(x). Note that the order depends on x. For this example, the conditions
of [Ba1] reduce to

Theorem 5.3. Suppose α(x) is Dini continuous, bounded above by a constant less than

2 and bounded below by a constant greater than 0. If L is given by (3.10) with n(x, dz)
defined by (5.2), then there exists a unique solution to the martingale problem for L started

at any point x0 ∈ R.

Dini continuity of α means that there exists ρ such that |α(x)− α(y)| ≤ ρ(|x− y|)
for all x and y and ∫ ε

0

ρ(x)
x

dx <∞

for all ε > 0.
Other papers that deal with properties of processes associated to operators of vari-

able order without assuming a great deal of smoothness include [Ba2], [Ne], [Ts3], [Km5],
[Kl1], [Ue].

It would be greatly desirable to have a uniqueness theorem for variable order oper-
ators where the hypotheses are relatively simple.

6. Regularity of harmonic functions.

In this section we give some regularity results for harmonic functions related to
the integral operators L such as those similar to (3.11). Before doing this, we mention
that there has been a great deal of recent work on the potential theory of symmetric
stable processes in domains, such as Fatou theorems, boundary Harnack principle, intrinsic
ultracontractivity, Green function estimates, etc. See [Ch] for a survey of some of the recent
work. Little of this has been extended to more general jump processes, but it would be
worthwhile doing so.
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First we consider the Harnack inequality. Suppose Lh(x) = 0 in a domain D ⊂ Rd.
Here the operators L that we are considering are of the form

Lf(x) =
∫

Rd\{0}
[f(x+ z)− f(x)− 1(|z|≤1)∇f(x) · z]n(x, z)dz, (6.1)

where

n(x, z) =
a(x, z)
|z|d+α

, (6.2)

α ∈ (0, 2), and a is bounded above and below by positive constants. It may so happen
that what one would like to consider as a harmonic function is not regular enough to be
in the domain of L. So a more general definition of harmonic function is to say that h is
harmonic if h(Xt∧τD

) is a martingale. Here τD = inf{t : Xt /∈ D}, the first exit time of
the domain D, and Xt is the Markov process associated to the operator L. We have the
following Harnack inequality [BL1].

Theorem 6.1. Suppose L is given by (6.1), n by (6.2), n(x, z) = n(x,−z) for all x and z,

x0 ∈ Rd, R > 0, h is nonnegative and harmonic in a ball B(x0, 2R) of radius 2R centered

at x0, and h is bounded in Rd. Then there exists a constant c1 not depending on h, x0, or

R such that

h(x) ≤ c1h(y), x, y ∈ B(x0, R).

This theorem has been extended by [SV] to more general n, but still ones that are
essentially stable of some order α.

One of the reasons one is interested in Harnack inequalities is that they often imply
that harmonic functions must be continuous. In [BL1] it is also proved that

Theorem 6.2. Under the same conditions as Theorem 6.1 there exist constants c2 and

γ ∈ (0, 1) such that

|h(x)− h(y)| ≤ c2

( |x− y|
R

)γ

‖h‖∞.

In other words, harmonic functions are Hölder continuous.

What if the function n is not of the form (6.2)? Suppose there exist constants c3, c4
and 0 < α < β < 2 such that

c3
|x− y|d+α

≤ n(x, y) ≤ c4
|x− y|d+β

, |x− y| ≤ 1, (6.3)

and with some appropriate conditions on n(x, y) when |x− y| ≥ 1? In [BK] it was proved
that the conclusion of Theorem 6.1 holds provided that β − α < 1 and one allows c1 to
depend on R. It was shown that the dependence on R cannot be dispensed with.

It is still unknown whether a Harnack inequality must hold in the case β − α ≥ 1,
or whether a counterexample exists.

14



If one turns to symmetric jump processes, that is, ones determined by the Dirichlet
form (3.12), that the analogue of Theorem 6.1 holds is implicitly proved in [BL2]; see also
[CK]. In the paper [BL2] upper and lower bounds on the transition probability densities
were found, extending and improving results of Komatsu [Km5].

I believe there is also an analogue of [BK], but that in this case the full range
0 < α < β < 2 is allowed. Whether the analogue of Theorem 6.2 holds in this full range is
at present unknown.

If one assumes more regularity in the operator L, that is, stronger conditions on n,
then more can be said about regularity. See [Kl2].
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Mathematics, 714. Springer, Berlin, 1979. (MR 81e:60053)

17



[JMW] Janicki, A.; Michna, Z.; Weron, A. Approximation of stochastic differential equa-
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driven by stable Lévy motion. Stochastic Process. Appl. 68 (1997), no. 2, 209–228.
(MR 99f:60114)

[Za3] Zanzotto, Pio Andrea. On stochastic differential equations driven by a Cauchy
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